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Abstract: Approaches for efficient pulse compression can enable dramatic increases in the
available peak power, as well as enable the generation of isolated attosecond X-ray pulses.
Achieving high compression ratios for longer wavelength drivers has, however, been challenging.
We present the compression of few-cycle 2.1 µm central wavelength short-wave infrared laser
pulses to 6.9 fs with 2.35 mJ pulse energy at a 10 kHz repetition rate. Electric field resolved
measurements reveal a single cycle light field oscillation. With a carrier-envelope-phase stability
of 131 mrad and average power fluctuations below 1 %, the system constitutes an excellent light
source for strong-field experiments and attosecond physics.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Advances in laser development propel modern science and technology [1–3]. In particular the
combination of a high peak power at infrared wavelengths and increasingly shorter laser pulse
envelopes paves the way for strong-field experiments even in the relativistic region [4], or for
attosecond science reaching the X-ray range [5]. In pursuit of the generation of such short laser
pulses, frequency broadening in hollow-core fibers (HCFs) has emerged as the gold standard [6–8].
Whereas the generation of additional frequency components in the laser spectrum was initially
decoupled from subsequent compression (e.g. via chirped mirrors [9,10]), novel approaches tune
the fiber parameters for self-compression [11,12], soliton propagation [13], or the generation
of dispersive waves in the ultraviolet [14–16] or mid-infrared [17]. In particular, the interplay
between the dispersion introduced by the gas, the non-linear interaction and the dispersion of the
waveguide allows self-compressing schemes, where those contributions counteract each other
[11,14]. This development is profiting from the concept of stretched hollow-core fibers that can
be extended to several meters in length [18]. Besides that, hollow-core photonic crystal fibers
have successfully been employed for the generation of super broadband continua [7,15,19,20].
The maximum achievable peak power is limited by the damage threshold, but peak powers up to
the gigawatt range have been demonstrated [21–23].

For the waveguide dispersion to become significant, smaller fiber core radii r are preferable due
to the ∝ r−2 scaling of the waveguide dispersion [14], even though they are prone to losses [14].
Typically, additional limitations are set by self-focusing and ionization [24–26] that prevent the
usage of arbitrarily small fibers for high power lasers. For the achievement of self-compression
in fibers, infrared laser sources are especially appealing due the increasing waveguide dispersion
with longer wavelength [12,14,27,28]. A combination of state of the art short-wave infrared
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(SWIR) laser systems with self-compressing spectral broadening systems thus promises the
generation of very high-peak powers due to the aforementioned scaling laws.

In this article, we demonstrate a self-compressing broadening scheme for a multi-millijoule
SWIR laser source. Driven by a 2.1 µm optical parametric chirped pulse amplifier [29], we
generate a multi-octave spanning spectrum that self-compresses to 6.9 fs, which marks the
single-cycle regime. With 2.35 mJ pulse energy at 10 kHz repetition rate and 138 mrad rms
carrier-envelope-phase (CEP) fluctuations, the presented light source constitutes an excellent
driver for high-harmonic generation with amplitude gating [5] or for the generation of tesla scale
magnetic impulses [30,31]. To the best of our knowledge, our system constitutes the highest
peak-power, multi-millijoule, multi-kilohertz, single-cycle and CEP stable SWIR laser system,
see Fig. 1 for a comparison of related systems from the recent literature. Since high laser peak
powers can be achieved by either increasing the pulse energy or by compressing the pulses and
thus confining the energy in a shorter interval of time, it is necessary to compare the peak power
of a system to the pulse duration to distinguish the technical approach. In Fig. 1, we compare
the performance for SWIR systems with a repetition rate in the range from 1 kHz to 100 kHz.
We estimate the peak power of the related literature systems, unless specified, by assuming that
90 % of the pulse energy is confined in the main peak of a sech2 pulse, which transfers to a
conversion via Ppeak = 0.88 ·

0.9Epulse
τFWHM

, where τFWHM is the full-width at half-maximum pulse
duration. This assumption might overestimate the performance of some systems. The assumption
of a sech2 pulse shape is arbitrary, but the difference to other commonly used models, such as
Gaussian pulses, is below 7 %. For our system, however, we use the exact value for the peak
power extracted from the field-resolved data presented below.

Fig. 1. Overview of state of the art laser systems in the SWIR region [12,21,23,26,29,32–51].
Green: CEP stable systems, blue: not CEP stable. The dashed lines indicate the pulse energy
according to our conversion law. For systems with a peak power different than that, however,
they do not apply.

2. Experimental approach

The laser front-end is a CEP-stable optical parametric chirped pulse amplifier reported elsewhere
[29]. It is operated at 4.5 mJ pulse energy corresponding to 45 W average power at a central
wavelength of λ0 = 2.1 µm with a pulse duration of 23 fs as confirmed via frequency-resolved
optical-gating [52,53]. A portion of 3.75 mJ is focused with an R = −2500 mm radius of curvature
spherical mirror into a 700 µm core-diameter hollow fiber, see Fig. 2. The beam angle and
position is actively stabilized (Aligna TEM Messtechnik GmbH) and the set point is used for
alignment of the beam through the fiber. The latter is stretched between two internally developed
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and adjustable fiber mounts and has a length of 2.4 m. One mount (depending on the desired
setup) is placed on a movable stage for adjusting the tension of the fiber by a spring. That
mechanism guarantees that a thermal expansion of the fiber during operation is compensated. We
find that the expansion is typically less than 0.5 millimeters in our setup, therefore, the movable
part can also be placed at the entrance since the maximum travel distance is smaller than the
Rayleigh length. The fiber is filled with 700 mbar of Neon at a static pressure. After the exit, a
1 mm CaF2 window allows for evacuating the subsequent beam path or for coupling the beam
out for experiments at ambient air. After re-collimation, the beam is sent to a Tiptoe setup
as well as to a 2f -3f interferometer for CEP control and measurement, besides other means
of diagnostics. The input and output spectra are amplitude calibrated with a calibration lamp
and shown in Fig. 2. The input spectrum is taken with an OceanOptics NIRQuest-512 (0.9 to
2.5 µm), whereas the output spectrum is taken with three devices, OceanOptics HDX (Si) and
NIRQuest-512 (0.8 µm-1.6 µm, InGaAs), as well as Spectral Products SM301-EX (PbSe).

Fig. 2. Fiber broadening with the 2.1 µm OPCPA laser. The black boxes indicate vacuum
chambers that can be pumped and filled individually. The distances in the figure are not to
scale. The spectra shown have a linear scale for the intensity amplitude. The Tiptoe box
also includes other means of diagnostics, such as a 2f − 3f interferometer or a powermeter.

We characterize the output of our system with the tunneling ionization with a perturbation for
the time-domain observation of an electric field (Tiptoe) [54] which has proven its reliability
in measuring laser pulses from the ultraviolet, visible or infrared regime [55], via ionization in
gases [54], solids [56] or micro- and nano-structures [57–59]. As a first experimental application
of the multi-octave spanning spectrum of our laser pulses, we investigate CEP effects in the
spectral response of Tiptoe. In particular, we exploit the CEP dependent sensitivity of Tiptoe at
harmonics of the central frequency [56,57,59] for an intrinsic calibration of the CEP owing to
our broad spectrum.

The main principle of Tiptoe, as presented in Ref. [54] and outlined in the corresponding
box in Fig. 2, is based on a strong pump beam, EPump, that generates an ion yield Q in a gas
by sub-cycle field ionization during its strongest optical half-cycle. This ion yield is linearly
perturbed by a second weak beam, ESignal, delayed by a time ∆t, which modulates the ion yield
according to the interference of both beams during the sub-cycle ionization gate. The ion yield
can be estimated via the ionization rate w(t), see Supplement 1. For those measurements, we
employ a Mach-Zehnder-type interferometer that contains perforated mirrors as dispersion free
beam-splitters. The transmitted part of the beam (ESignal) contains a piezo-driven retro reflector
and an optical chopper enabling lock-in detection of the ion yield modulation. For delay control,
the interference pattern of a co-propagating frequency-stabilized HeNe laser is detected with
a camera and stabilized by feedback to the piezo driver. The intensity ratio in the focus is
ISignal/IPump ≈ 3 × 10−4, where Pump refers to the reflected beam in the interferometer. The
perturbing field strength is only 1.7% of that of the pump.

https://doi.org/10.6084/m9.figshare.29233724
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3. Power and CEP stability

To uncover the performance of our fiber broadening system, we investigate the power and CEP
stability as well as the beam profile. We achieved a transmitted power of 23.5 W that is stable
within a standard deviation of 0.226 W, corresponding to 0.96 %, as measured over a time interval
of more than 50 minutes (Fig. 3(a)). The corresponding transmission is 63 %. The expected
value we found from simulation with the code from Ref. [60] is around 90 % and deviates from
our value due to in-coupling losses in our setup. The beam-profile of the fiber output in the
focus of a f = 400 mm spherical mirror measured with a micro-bolometer camera is shown in
Fig. 3(b), together with the profile of the collimated beam (part c) and d)). In Fig. 3(c), we added
a 1 µm longpass filter to show that the short wavelengths are closer on axis when compared to
the full beam-profile in d). The spatial distribution of the spectral components has influence on
the field-measurements, see discussion in the Supplement 1.

Fig. 3. a) Power stability measurement yielding 23.5 W average power at the fiber exit
with a standard deviation of 226 mW, which is 0.96 %. b) Focus of the fiber output with a
f = 40 cm spherical mirror on a Rigi Microbolometer camera. c) Collimated beamprofile on
a Pyrocam IV, with 1 µm longpass filter and without (d)).

We confirmed the CEP stability of the fiber output by measuring 2f -3f interference fringes
in an out-of-loop measurement, while stabilizing it with an in-loop PID control. Here, the 2f
spectral components generated via frequency doubling in β-barium borate overlap conveniently
in the range of silicon detector with the third harmonic that is generated in the fiber. Thus, we
could exploit readily available silicon based spectrometers for detection. The extracted relative
CEP from the interference fringes is detected over an extended period of time as shown in
Fig. 4(a) and its fluctuations amount to a standard deviation of 138.2 mrad. Here, we acquire
a spectrogram every 64 ms, thus fast CEP modulations are not resolved. When measuring the
single-shot CEP stability of our system, we find a value of 381.1 mrad, see Fig. 4(b). There,
we use our triggered spectrometer (Avantes Avaspec ULS-4096CL-EVO-UA-10) to acquire a
spectrum for a single laser shot. We set the integration time to 90 µs, shorter than the 100 µs
time between two consecutive laser pulses to ensure only a single pulse is detected. However, we
cannot measure the CEP for every consecutive shot due to a dead time of the device after an
acquisition of 698 µs [61]. Thus, we expect that at least 7 pulses are skipped between each frame
in the single-shot data. Nevertheless, we believe that the single-shot measurement confirms that
the CEP stability is maintained from a near shot-to-shot basis to a one-hour-scale. To the best of
our knowledge, this is the highest CEP stability of a multi-kilohertz, multi-millijoule, single-cycle
2 µm based system.

https://doi.org/10.6084/m9.figshare.29233724
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Fig. 4. a) The extracted phase of the 2f -3f -fringes after the fiber shows a standard deviation
of 138 mrad over a time of more than 50 minutes. b) Single-shot CEP data exhibiting a
standard deviation of 381.1 mrad for 1000 shots.

4. Characterization of the time-domain electric field

The measurement of the pulse shape and duration is particularly challenging for super broadband
spectra. For multi-octave spanning spectra, the measurement of the electric field of the laser
pulse is the appropriate approach. Therefore, we perform Tiptoe-measurements [54] for the
characterization of our system. The measured Tiptoe waveforms are shown in Fig. 5(a) for a
relative CEP of the input pulses of 1.5 rad and 3.1 rad as stabilized with the 2f -3f interferometer.
The full-width at half-maximum (FWHM) pulse duration of the intensity envelope is 6.9 fs,
which is even shorter than the cycle-time associated with the central wavelength of the input of
≈ 7 fs. This value corresponds to a peak power of 0.26 TW. For the time-domain electric fields,
we apply a Tukey-window in Fourier space to select the frequency components between 0.03 and
0.5 PHz. To sample such short pulses, we place an additional 0.3 mm fused silica plate before the
Tiptoe setup when the chamber is pumped down to a millibar regime, and 0.6 mm fused silica if
at room pressure. We do not observe a significant elongation of the main pulse in the Tiptoe
measurement depending on the gas pressure when compensating for the dispersion, however, we
do see the formation of side pulses due to the higher amount of of dispersive media being present
in the beam path. Additionally, we observe an increasing signal-to-noise ratio when reducing the
pressure. We believe that this is an effect of the bias voltage (10.6 V) being more appropriate at
lower pressures, similarly to Ref. [54], where a higher bias voltage was used in the ambient air
measurements. The data shown in Fig. 5(a) is taken at a pressure of 10 mbar.

The CEP is shifted for both pump and signal beam synchronously. This simultaneous shift
can, however, not be measured with Tiptoe since it is only sensitive to the CEP difference
between both beams (c.f. Refs. [54,55,57,59] and Supplement 1). Thus, the CEP of the measured
waveform is not supposed to change with the CEP of the laser pulses and only represents the
actual electric field if the CEP of the pump beam is 0. Consequently, a calibration of the CEP of
the pump is necessary which was done previously using a second harmonic field [54]. Profiting
from the multi-octave bandwidth of our laser system, we can intrinsically calibrate the CEP
by observing the resolved spectral amplitudes in the 2f region of the central frequency f , in

https://doi.org/10.6084/m9.figshare.29233724
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Fig. 5. a) Time-domain electric field (blue) and measured waveform for a different CEP
(red). b) spectral field amplitudes corresponding to the waveforms in a). Effects of the CEP
of the laserpulses are visible between 0.3 and 0.38 PHz. Spectral amplitudes of the fiber
output measured with spectrometers (black line). The arrows indicate the corresponding
axis.

particular from 0.3 to 0.38 PHz. There, the resolved spectral amplitudes are enhanced for a CEP
of the pump of 0. The results of a CEP scan and the observation of the expected modulations in
the 2f region, see supplement, identify the relative CEP of 1.5 rad with a pump beam CEP of 0.
Thus, the waveform shown in that case represents the electric field of the signal beam.

The spectral amplitudes and phases of the Tiptoe data are shown in Fig. 5(b), together with
spectrometer data (black line). Overall, a good agreement of both curves is found. The residual
differences of the measured spectral amplitudes to the spectrometer data originate in the response
function of Tiptoe and in the geometry of the interferometer, see Supplement 1. As apparent
from Fig. 5(b), the spectral phase is flat over a broad spectral region but exhibits a curvature at
higher frequencies. Its similarity to the expected spectral phase of the materials in the beam path
from the fiber exit to the measurement point (black dashed line) confirms that the output phase at
the fiber exit is flat. Thus, the presented broadening scheme is in principle self-compressing via
means of soliton self-compression (see Supplement 1), where the fiber length aligns with the
soliton fission length. The propagation through gas and material introduce a small amount of net
dispersion that is responsible for the observation of the faster oscillations after the main pulse,
see inset in Fig. 5(a). A polynomial fit yields a residual group delay dispersion of −3 fs2 and
a third order dispersion of 35 fs3. Note that in our sign convention, the field at negative times
arrives earlier at target than the one at positive times which defines the sign of the curvature of
the spectral phase. Those oscillations are only detectable for correct CEP of the pump beam
since they originate in the high-frequency part of the spectrum. For the spectral phase of the

https://doi.org/10.6084/m9.figshare.29233724
https://doi.org/10.6084/m9.figshare.29233724
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material, we use the refractive index data of Refs. [62–64] for 0.7 m of Neon at 700 mbar, 1 mm
of CaF2, and 0.3 mm of fused silica, respectively. We subtract the constant and linear terms
to match the phase we found in the experiment. The data of Ref. [62] is only measured in the
visible to near-infrared range and is extrapolated to our bandwidth which is a possible explanation
for the deviation in the long wavelength range. Additionally, plasma effects on the spectral
broadening are found to have minor influence, which is supported by the numerical studies of the
fiber dynamics with and without plasma effect (see Supplement 1), but also with overall good
agreement of the spectral phase with the material phase in the beam path.

Overall, the multi-octave bandwidth allows for an in-situ CEP calibration due to the observed
modulations in the 2f region. Even though the response phase of Tiptoe has been discussed
and observed before [56,57,59], an investigation of the modulations of the 2f components has
hitherto been hindered by too narrow band laser sources and therefore required the generation
of a second harmonic [54]. With our light source, however, we intrinsically cover that region
and can thus calibrate the CEP without any other calibration setups. Intensities in the range of
1017 W/cm2 are achievable with our system which may drive future strong field experiments even
in the relativistic region, at a multi-kilohertz repetition rate.

5. Conclusion

We have demonstrated a high-power short-wave infrared spectral broadening scheme providing
CEP stability, multi-millijoule pulse energy and high average power. The actual electric field
waveform has been successfully characterized with Tiptoe and due to the two octave bandwidth,
an in-situ CEP calibration was possible. The self-compressing properties of the fiber eliminate
the necessity of post-compression via dispersive mirrors which are prone to transient non-
linearities even at moderate laser intensities that degrade the beam properties [65]. Additionally,
the bandwidth limitations of dispersive mirrors can only be overcome by complex light-field
synthesis setups [66–68] which our approach eliminates, resulting in a comparatively simple and
robust pulse compression scheme. Our approach bypasses constraints for the polarization that
are typically caused by dispersive mirrors and thus allows for spectral broadening of arbitrary
polarization states. Even though there are new approaches with polarization independent chirped
mirrors [69], the supported bandwidth is typically narrower than what is achievable with a
self-compression approach as described in this article. We also demonstrated that a static pressure
can be used in the fiber and since the window material dispersion and the dispersion in gases
counteract each other, a small amount of material can be placed without significant performance
degradation. Thus, the compression scheme is appealing to applications outside a vacuum
environment.
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