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Theory of Nonlinear Photoconductive Sampling in Atomic
Gases

Manoram Agarwal, Armin Scrinzi, Ferenc Krausz, and Vladislav S. Yakovlev*

The formation and evolution of electron wave packets in the process of
strong-field ionization is one of the major research topics in attosecond
science. The recently developed technique of nonlinear photoconductive
sampling (NPS) requires a detailed understanding of these dynamics and
provides a new approach to studying them. This work is motivated by the lack
of a solid theoretical foundation for NPS measurements. The analysis shows
that, for NPS in atomic gases, the strong-field approximation provides an
adequate description of the ionization dynamics but makes a significant error
in predicting the spectral response function because the Coulomb interaction
between photoelectrons and their parent ions significantly affects the motion
of the electron wave packets.

1. Introduction

One of the early achievements of attosecond physics was the
direct measurement of light waves,[1] where the photoioniza-
tion of atoms by a subfemtosecond pulse of extreme ultravio-
let light was used to sample the electric field of a few-cycle laser
pulse. While powerful, this method has been accessible to only
a few laboratories—both attosecond pulse generation and pho-
toionization measurements require an expensive vacuum infras-
tructure in addition to a laser system capable of producing in-
tense, few-cycle laser pulses with a stabilized carrier-envelope
phase (CEP). Recently, several much simpler techniques for sam-
pling broadband optical fields have been invented.[2–10] These
techniques still rely on CEP-stabilized laser pulses, but they do
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not use attosecond bursts of extreme ul-
traviolet light. Each of these techniques
takes advantage of some fast nonlinear
phenomenon that confines the nonlin-
ear interaction of a few-cycle intense laser
pulse with amuch weaker field of a probe
pulse to a time interval much shorter
than any optical cycle in either pulse. One
of these techniques is nonlinear pho-
toconductive sampling (NPS),[7] which
takes advantage of a rapid change in the
conductivity of a medium[11] caused by
strong-field (multiphoton or tunneling)
ionization. In this technique, the ioniz-
ing and probe fields are linearly polar-
ized and orthogonal to each other (see

Figure 1). The central part of the gating pulse generates free-
moving charges by ionizing gas atoms or photoinjecting carriers
in a wide bandgap solid. The probe pulse accelerates the charges
so that they acquire displacement and velocity along the direc-
tion of the probe field. As a result, a macroscopic electric dipole
is formed, whose field can be measured by placing one or more
electrodes close to it and detecting the induced mirror charge.[12]

Due to the high nonlinearity of strong-field ionization, the band-
width of NPS exceeds one petahertz.[7] This large bandwidth is
understood to be a consequence of subfemtosecond peaks in the
time-dependent ionization rate—most free charges appear at the
peaks of the ionizing electric field, and their generation is con-
fined to time intervals significantly shorter than a half-cycle of
the field oscillation.
To take full advantage of the PHz bandwidth of NPS, its spec-

tral response function must be known. From a theoretical point
of view, there are two fundamental problems. First, it is essential
to know the ionization rate, for which many models exist, but it
is not clear from the existing literature which one is most appro-
priate for describing NPS measurements. Second, the Coulomb
attraction between a free electron and its parent ion is known to
play an important role in strong-field physics, but the effect of
this interaction on NPS measurements was not explored.
In this paper, we present a systematic theoretical analysis of

an idealized NPS measurement, where the measured signal is
assumed to be proportional to the drift electric current formed
by the ionization of gas atoms and the acceleration of the elec-
trons by the probe pulse. Within the strong-field approximation
(SFA), we derive expressions for the dependence of the drift cur-
rent on the gate-probe delay. From these equations, we obtain an
analytical result for the ionization rate. A comparison of the SFA
results with that of the numerical solution of the time-dependent
Schrödinger equation (TDSE) allows us to study the role of the
Coulomb attraction between a free electron and its parent ion.
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Figure 1. Schematic of nonlinear photoconductive sampling. An atom is
exposed to a strong gate pulse (red) polarized along the z-axis and a weak
probe pulse (blue) polarized along the x-axis. The electric field of the gate
pulse ionizes atoms via multiphoton absorption or tunneling. The electric
field of the probe pulse accelerates the free electrons along the x-axis.

We find that this electron-ion interaction must be taken into ac-
count to fully exploit the potential of NPS for measuring broad-
band waveforms.

2. A General Description of Photoconductive
Sampling

There are two pulses involved in photoconductive-samplingmea-
surements: a gate pulse that detaches electrons from atoms
within a possibly short time window, and a weak, linearly polar-
ized probe pulse that accelerates photoelectrons but does not ion-
ize atoms on its own.When photoconductive sampling is applied
for optical-field detection, the goal is to measure the electric field
of the probe pulse by observing a signal resulting from the dis-
placement of photoelectrons caused by their interaction with the
probe field. For this scheme to work reliably, it is helpful to mini-
mize the effect of the gate pulse on the electron motion along the
direction of the probe field. In the case of nonlinear ionization,
which requires strong electric fields, the field of the gate pulse
must be orthogonal to the probe field. In the following, we will
denote the gate and probe fields as Ez(t) and Ex(t), respectively.
If an electron were a classical particle starting its free motion

at a birth time tb, then by the end of its interaction with the probe
field, it would acquire the following drift velocity along the x-axis:

vdrift(tb) = − e
me ∫

∞

tb

Ex(t
′) dt′ = − e

me
Ax(tb) (1)

Here, e > 0 is the elementary charge, me is the mass of the elec-
tron and A(t) is the vector potential defined by E(t) = −A′(t). If
we could confine photoionization to a time interval that is much
shorter than the fastest oscillation in Ex(t) and measure how the
drift velocity depends on the gate-probe delay, then, within this
simple model, the measured signal would be proportional to the

vector potential of the probe pulse. The physics that relates the
acceleration of charges by the probe field to the measured signal
is complicated; it involves the formation of a macroscopic dipole,
the field of which interacts with a nearby electrode, causing some
charge to flow through a circuit connected to the electrode. Al-
thoughmean-field charge interactions and electron-atom scatter-
ing affect the magnitude of the measured signal and its depen-
dence on the gas pressure[12] they have little effect on the delay
dependence of the signal because they unfold on time scales that
exceed the duration of the probe pulse by orders of magnitude.
For our theoretical analysis, we will assume that the x compo-
nent of the drift electric current in single-atom simulations is the
observable relevant to NPS measurements and focus our atten-
tion on improving the oversimplified model embodied in Equa-
tion (1).
We first need to account for the fact that photoionization can

occur at any time during the gate pulse, although nonlinear ion-
ization ismost probable when the electric field of the gate pulse is
close to its peak value. This is done by introducing an ionization
rate Γ(t), which we regard as the probability density of ionization
at time t. Although the concept of ionization rate is widely used
to describe photoionization, it is controversial because there is
no unique way to define the ionization probability in the pres-
ence of a strong electric field. We will show later how to solve
this problem in the context of photoconductive sampling within
the strong-field approximation. For now, we simply assume that
a meaningful definition of Γ(t) exists and that this quantity does
not depend on the probe field. If the Coulomb interaction be-
tween a photoelectron and its parent ion were negligible, then the
density of the drift electric current along the probe field would be
given by

Idrift(𝜏) =
e2Nat

me ∫
∞

−∞
Γ(tb − 𝜏)Ax(tb) dtb (2)

where Nat is the concentration of atoms and 𝜏 is the gate-probe
delay, which we define as the arrival time of the gate pulse. In the
frequency domain, we can write Equation (2) in this form

Idrift(𝜔) =
e2Nat

me
Ax(𝜔)G

∗(𝜔) (3)

Here we have denoted the Fourier transform of Γ(t) by G(𝜔)
because Equation (3) is more general than the classical model,
which we have used mostly for pedagogical reasons. This equa-
tion is a general description of a linear relationship between Ax
and Idrift. Therefore, it must be valid also in quantum mechanics
as long as the probe field is so weak that its interaction with elec-
trons can be considered linear. Note that this requirement allows
the interaction with the gate field to be very nonlinear and even
nonperturbative. From this point of view, G(𝜔) is the spectral re-
sponse function of NPS measurements, while its time-domain
counterpartG(t) is a gating function, which may or may not have
the meaning of an ionization rate.
The main assumption that we made in deriving Equation (2)

was to neglect the Coulomb interaction between the electron and
the ion. Let us search for a suitable ansatz that would incorporate
this interaction into our formalism. An optical gate field that is
strong enough to drive multiphoton ionization quickly removes
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a photoelectron from the region where the interaction is signifi-
cant. If the time that it takes an electron to escape the ion’s vicin-
ity is much shorter than the period of the probe field, then the
value of the field at the birth moment largely determines the ef-
fect of the Coulomb interaction on the drift velocity. This consid-
eration suggests the following ansatz

Idrift(𝜏) =
e2Nat

me

(
∫

∞

−∞
Γ(tb − 𝜏)Ax(tb) dtb

− ∫
∞

−∞
GC(tb − 𝜏)Ex(tb) dtb

)
(4)

where GC(t) is the Coulomb gate, which can also describe the
effect of the Coulomb interaction on electron-ion recollisions. In
the frequency domain, we can keep Equation (3) as it is and define

G(𝜔) = Γ(𝜔) + i𝜔GC(𝜔) (5)

where we have used Ex(𝜔) = i𝜔Ax(𝜔).

3. Strong-Field Approximation

In the strong-field approximation, the electron-ion Coulomb in-
teraction is neglected as soon as photoionization occurs, al-
lowing the time-dependent Schrödinger equation to be solved
analytically.[13] In the absence of the interaction, Equation (2)
serves as an ansatz for interpreting quantum results. This allows
us to define the ionization rate, Γ(t), as a quantity that, once con-
volved with the vector potential of a probe field yields Idrift(𝜏) ac-
cording to Equation (2). This definition obviates the need to calcu-
late ionization probabilities during the interaction with a strong
field. Since the drift velocity of an electron is an unambiguously
defined physical observable, our definition of the ionization rate
within the SFA is also unambiguous.
In Appendix A, we derive the following equations for the ion-

ization rate

ΓSFA(t) = Γ1(t) + Γ2(t) + Γ3(t) (6)

Γ1(t) = 2∫
∞

0
dp p2 ∫

𝜋

0
d𝜃 sin 𝜃 ∫

∞

−∞
dT g0(t, T, p, 𝜃) (7)

Γ2(t) = −2i∫
∞

0
dp p4 ∫

𝜋

0
d𝜃 sin3 𝜃 ∫

∞

−∞
dT ∫

T

−T
dt′

×
[
g2(t + t′, T, p, 𝜃) − g2(t, T, p, 𝜃)

]
(8)

Γ3(t) = 2 𝜕

𝜕t ∫
∞

0
dp p3 ∫

𝜋

0
d𝜃 sin2 𝜃 ∫

∞

−∞
dT

×
[
h(t, T, p, 𝜃) + h∗(t,−T, p, 𝜃)

]
(9)

where we have used atomic units and d(p) is the dipole matrix el-
ement that is responsible for transitions from the ground atomic
state to the continuum state with the (asymptotic) momentum
p = (ez cos 𝜃 + ex sin 𝜃)p. For amany-electron atom, d(p) accounts

for electron screening within the atom, depends on the final ionic
state, and describes the rearrangement of bound electrons during
the release of a single electron. The gn and h functions are defined
as

gn(t, T, p, 𝜃) = eiΦ(t−T,t+T,p)Ez(t − T)Ez(t + T)∫
2𝜋

0
d𝜙 cosn 𝜙 d∗z

×
(
p + ezAz(t − T)

)
dz

(
p + ezAz(t + T)

)
(10)

and

h(t, T, p, 𝜃) = e−iΦ(t,t−2T,p)Ez(t − 2T)∫
2𝜋

0
d𝜙 cos𝜙 d∗z

×
(
p + ezAz(t − 2T)

)
dx

(
p + ezAz(t)

)
(11)

where

Φ(t1, t2, p) = i(t2 − t1)Ip +
i
2 ∫

t2

t1

dt′
[
p + ezAz(t

′)
]2

(12)

and Ip is the ionization potential. An equation that is equiva-
lent to our expression for Γ1(t) appears in ref. [14]. Although it
is common in theories based on the SFA to reduce the num-
ber of integrals using the saddle-point method, we have de-
rived the above expressions without using this approximation,
which makes them accurate in a large parameter space. These
equations describe single-photon transitions, multiphoton tran-
sitions, and quantum tunneling on the same footing. Apart
from the SFA, the main assumptions we made in deriving
them were to neglect the role of excited bound states and to
demand a linear relationship between the probe field and the
component of the drift electric current that is parallel to the
field.

4. Numerical Experiment

In an ideal NPS measurement, most atoms are ionized by the
central half-cycle of the gate pulse, which is possible if the ion-
ization process is highly nonlinear, the gate pulse is not much
longer than a single oscillation of its carrier wave, and the cen-
tral half-cycle of the pulse is significantly stronger than any other
half-cycle. For our numerical experiment, we took a gate pulse
with a central wavelength of 𝜆gate = 850 nm (ℏ𝜔gate = 1.46 eV).
The pulse intensity had a full width at half maximum (FWHM)
of 2.84 fs, and its field had a peak strength of 3.07 VÅ−1. Since the
purpose of these simulations is to investigate the general prop-
erties of NPS (rather than to model a specific experiment), we
decided to run them for a hydrogen atom. (To apply our theory
to a noble-gas atom, we would have to resort to the single-active-
electron approximation, in which case we would have to use a
suitable effective atomic potential and numerically evaluate the
dipole matrix elements, which are well known for hydrogen.) For
the probe pulse, the main constraint is that it must not ionize
atoms via single-photon absorption. We chose it to have a central
energy of ℏ𝜔probe = 3.54 eV, a width of 0.93 fs, and a peak electric
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Figure 2. The electric field of the gate pulse (red) and three ionization
rates evaluated in the strong-field approximation: ΓSFA, where the fast os-
cillations allow probe pulses influence the ionization process,G1(t), which
is free from the oscillations, and, for comparison, the quasistatic ADK rate,
ΓADK.

field of 0.008 V Å−1. The vector potentials of both pulses had the
same shape

A(t) =
E0
𝜔0

cos8
(
𝜋t
T

)
cos(𝜔0t − 𝜙CEP) (13)

for 𝜋|t|∕T ≤ 𝜋∕2 and zero outside this interval.
For the numerical solution of the TDSE, we employed the

tRecX code.[15] To perform the simulations on a relatively small
spatial grid, we used the infinite-range exterior complex scaling
method.[16] This method acts as a perfect absorber for an outgo-
ing electron wave packet, while the properties of the wave packet
can be determined by recording the values of the time-dependent
wave function at the boundary where complex scaling is turned
on.We placed this boundary at a distance of 60 atomic units from
the ion. The drawback of this method is that it takes a long time
for slow electrons to reach the boundary, which makes the calcu-
lations prohibitively long.We overcame this problemby using the
infinite-time surface flux method.[17] Once the optical fields dis-
appeared, the wave functions inside the unscaled volume were
projected onto the exact eigenstates of the atomic potential, al-
lowing the further evolution of the wave packet to be calculated
analytically. These calculations gave us −e limt→∞⟨p̂(t)⟩, which is
the contribution of a single atom to the drift current.

5. Results

We derived ΓSFA(t) from the requirement that the quantum-
mechanically evaluated Idrift(𝜏) must satisfy Equation (2), which
we justified using classical mechanics. Figure 2 shows ΓSFA(t) as
described by Equations (6)–(12). The function looks very differ-
ent from what ionization rates typically look like: it takes both
positive and negative values, and it oscillates on the wings of the
gate pulse where we do not expect ionization to occur. We explain
this behavior in Appendix A as the result of quantum interference

between the wave packets formed by the gate and probe pulses
(which requires single-photon ionization by the probe pulse). It
should also be noted that, in the quantum treatment, the inter-
action of the atom with the probe pulse is not decoupled from
that with the gate pulse. Even a weak probe field can influence
the process of strong-field ionization (for solids, this is known as
the Franz–Keldysh effect).
Whether ΓSFA(t) should be called an ionization rate is a seman-

tic question, but its Γ1 component (thick blue line in Figure 2)
has all the attributes of conventional ionization rates: it takes only
positive values, it has peaks at the extremes of the gate field, and
the magnitudes of these peaks grow rapidly with the peak val-
ues of the field’s half-cycles. In Appendix B we show that the
integral of Γ1(t) is equal to the ionization probability. For com-
parison, Figure 2 also contains the ionization rate predicted by
the Ammosov–Delone–Krainov (ADK) theory[18] (brown curve).
The shape of ΓADK(t) is very similar to that of Γ1(t), and the
discrepancy is mainly due to the fact that the ADK rate is a
quasistatic one, which is valid only in the tunneling regime,
while Γ1(t) is a more general result. For the peak gate field in
our simulations, the Keldysh parameter takes a value of 0.9,
which is intermediate between the multiphoton and tunneling
regimes. While the ADK rate appropriately describes the ion-
ization dynamics in the main half-cycle of the gate pulse, it
underestimates the contributions from the weaker neighboring
half-cycles. Figure 2 shows us that, for the chosen simulation
parameters, the photoionization by the gate pulse is confined
to sub-half-cycle time intervals. According to Γ1(t), 89% of the
ionization takes place within the central half-cycle of the gate
field.
In Figure 3, we show the residual average electron velocity in

the direction of the probe field, comparing the TDSE and SFA cal-
culations.
We chose to plot the delay dependence of ⟨vx⟩ instead of Idrift

because the SFA often greatly overestimates the ionization prob-
ability. To evaluate the velocities, we divided the electric currents
by the respective ionization probabilities and changed the sign
of the result because the electron charge is negative. In the SFA,
we evaluated the ionization probability by integrating ΓSFA(t) over
time. In addition to providing a fair comparison of the TDSE and
SFA results, plotting the drift velocities in atomic units allows us
to compare them with the vector potential of the probe pulse. We
see that, to a first approximation, NPS indeed measures the vec-
tor potential, see Equation (1), At the same time, there are notable
differences not only in the magnitude of ⟨vx⟩(𝜏) but also in its
shape. According to the SFA, ⟨vx⟩(𝜏) is not a replica of −Aprobe(𝜏),
but the two curves reach their three central extrema at practically
the same values of 𝜏, and they are both even functions. The TDSE
calculations produce a curve that has a somewhat different shape
and a smaller amplitude, is shifted toward positive delays, and is
not symmetric.
Themain reason for the difference between the TDSE and SFA

curves in Figure 3a must be the Coulomb interaction between a
free electron and its parent ion, which is neglected in the SFA.
This interaction is particularly important when the ionizing field
changes its sign, decelerates a free electron, and then makes it
collide with its parent ion. This process, known as recollision, is
responsible for many effects in strong-field physics. In particular,
the strong Coulomb attraction at the recollisionmoment strongly
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a)

b)

Figure 3. The average velocity of the electron wave packet after the inter-
action with the light pulses. The plots show how the projection of the drift
velocity onto the direction of the probe field depends on the gate-probe de-
lay. a) Simulations with the few-cycle gate pulse (see the inset), where an
electron can recollide with its parent ion. b) The sum of ⟨vx⟩ evaluated in
simulations with half-cycle gate pulses that, together, produce a pulse that
is very similar to the few-cycle gate pulse (see the inset). Here, electrons
do not recollide.

influences electronmotion. To see howmuch recollision matters
for NPS, we decomposed the gate pulse into a series of half-cycle
pulses, evaluated ⟨vx⟩(𝜏) for each of these half-cycle gate pulses,
and summed the results. Since the electric field of a half-cycle
pulse never changes sign, there is no recollision. Figure 3b shows
the outcomes of these simulations. The SFA results are practi-
cally identical to those in Figure 3a, which means that the differ-
ent half-cycles of the few-cycle gate pulse ionize independently of
each other—there are no visible interference effects. The results
obtained by numerically solving the TDSE (green curve) are now
closer to the SFA ones, but there are still noticeable differences.
This means that recollision is important, but the Coulomb in-

a)

b)

Figure 4. The velocity increment acquired by photoelectrons due to the
presence of the ionic Coulomb potential. a) A comparison of the simula-
tions with the few-cycle gate pulse, where recollisions occur, with the sum
of ⟨Δvx⟩ in the simulations with the half-cycle gate pulses, where recolli-
sions do not occur. b) In the simulations with a single half-cycle gate pulse
(see inset), ⟨Δvx⟩(𝜏) has a shape that is very similar to that of Ex(t).

teraction between an electron and an ion shortly after ionization
also matters.
The effect of recollision is more evident in Figure 4a, where we

plot the difference between ⟨vx⟩(𝜏) in the TDSE simulations and
that in the SFA. Assuming that the electron-ion interaction is the
main effect that is responsible for the difference, ⟨Δvx⟩(𝜏) repre-
sents the x component of the Coulomb force integrated from the
moment an electron becomes free to the end of the probe pulse
and averaged over all quantum pathways. This plot shows more
clearly that the effect of recollision is of a comparable magnitude
to that of the Coulomb attraction immediately after the electron
is released, but recollision strongly reshapes ⟨Δvx⟩(𝜏).
Let us examine the effect of the Coulomb force in the case of

a half-cycle gate pulse. Figure 4b shows that the corresponding
increase in the drift velocity has a shape that is very similar to that
of Ex(t). This observation supports the argument that we used to
justify Equation (4): If ionization is caused by a strong electric
field, the electron spends a very short time at a distance from the
ionwhere the ionic Coulomb force is significant, so that the effect
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Figure 5. The Coulomb gating function, GC(t), for a half-cycle gate pulse
(see the inset). Here we compare the results obtained by solving the TDSE
to the classical ones (see the text for further details).

of the force on the x component of the drift velocity is largely
determined by the probe field at the moment of ionization.
This insight also largely explains the time shift that we saw in

Figure 3b, which looked like there was a delay in photoioniza-
tion. If both gating functions in Equation (4) are narrow spikes
centered at t = 0, then Idrift(𝜏) is a sum of a function that is ap-
proximately proportional to Ax(t) and a function that is approx-
imately proportional to Ex(t). For a monochromatic probe field,
this would be a weighted sum of cos(𝜔probet) and sin(𝜔probet),
which is a phase-shifted monochromatic wave. In the terminol-
ogy used to describe photoemission delays; the time shift in
Figure 3b is mostly due to the Coulomb-laser coupling.[19,20]

In addition to the time shift in Figure 3b, there is also a small
shift between the two curves in Figure 4b, which occurs because
the probe field changes slightly during the time it takes an elec-
tron to escape from the vicinity of the ion.
At this point, we can address the question of whether our SFA-

based theory correctly predicts ionization dynamics. Without any
constraints, the decomposition ofG into an ionization rate Γ and
a Coulomb gate GC, summarized in Equation (5), is not unique;
one of these components must be known to determine the other.
Also, there is no universally applicable way to obtain the ion-
ization rate from a numerical solution of the TDSE, which we
could compare to ΓSFA. Nevertheless, we can renormalize ΓSFA
by requiring that the ionization probability must be equal to that
in the numerical solution of the TDSE, evaluate GC from Equa-
tion (5), and compare the result with the predictions of a classi-
cal model for an electron accelerated by the combined field of the
light pulses and the ionic Coulomb potential. Figure 5 visualizes
this analysis in the case of a single half-cycle gate pulse (which is
free of recollision). The green “quantum” curve in this plot shows
GC(t) obtained by applying deconvolution to the second term on
the right-hand side of Equation (4), andwe calculated this term by
subtracting the drift current evaluated with the properly normal-
ized ΓSFA from the drift current obtained by numerically solving
the TDSE. The other two curves show GC(t) obtained by solving
Newton’s equations of motion (see Appendix C for details). For

Figure 6. The magnitude and phase of G(𝜔) for the few-cycle gate pulse.
The blue curve shows ΓSFA(𝜔). The green and orange curves represent the
numerical solution of the TDSE and the combination of such numerical
solutions for a series of half-cycle pulses that, together, approximate the
few-cycle gate pulse.

the black “class. tb = 0” curve, we considered a single electron
starting its motion at the moment when the gate field is at its
peak. For the blue “class. + SFA” curve, we averaged our classi-
cal results over birth times using Γ1(t) as the weighting function.
The fact that we were able to reproduce the quantum result with
the classical analysis provides strong evidence that the renormal-
ized Γ1(t) rate indeed accurately describes the dynamics of ioniza-
tion, which is consistent with recent work on Coulomb-corrected
SFA.[21]

For the few-cycle pulse, the deconvolution that we performed
for Figure 5 is problematic. Since our SFA model does not con-
sider excited bound states, we can compare our SFA results with
those obtained by numerically solving the TDSE only for probe
pulses that do not excite atoms via single-photon transitions.
This condition imposes a limit on the highest frequency, for
which we can calculate GC(𝜔). There are also technical difficul-
ties that limit the available low frequencies: the spectral intensity
of light pulses that can be used for tRecX calculations must be
zero at 𝜔 = 0. Performing the deconvolution, therefore, requires
extrapolation. In the case of the single half-cycle pulse, the good
agreement with the classical model allowed us to use the classical
analysis for the extrapolation. For the few-cycle pulse, the decon-
volution problem is more challenging, especially if recollision is
important. For this reason, we present the gating functions in
the frequency domain, see Figure 6. In the strong-field approx-
imation, the phase of G(𝜔) is zero. The Coulomb interaction of
an outgoing electron with the ion decreases the phase, while rec-
ollision increases it. We also see that the electron-ion interaction
decreases the magnitude of the spectral-response function at
low frequencies and increases it at high frequencies, especially
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if recollisions occur. The decrease in |G(𝜔)| at low frequencies
is because the Coulomb attraction counteracts the force exerted
on an electron by the probe field. The increase in |G(𝜔)| at
high frequencies means that the Coulomb interaction provides
additional gating, which can be confined to even shorter time
intervals than that of strong-field ionization.

6. Conclusions

Although the main motivation for this work was to develop a
theory for photoconductive sampling, we regard Equations (6)–
(12) for the ionization rate as our most general result, which
may have other applications, especially in the field of attosecond
physics. Apart from the strong-field approximation, we made as
few assumptions as possible to derive these equations. In partic-
ular, we did not use the saddle-point integration, which makes
the ionization rates applicable in various regimes, from single-
photon through multiphoton to tunneling. Our numerical simu-
lations provide evidence that these equations accurately describe
the ionization dynamics, but they are insufficient for modeling
photoconductive sampling because the electron-ion interaction,
which the strong-field approximation neglects, is essential for
the formation of the drift electric current. We have proposed
an ansatz for interpreting photoconductive-sampling measure-
ments: Equations (4) and (5). In our numerical simulations, we
were able to separate the effect of electron-ion recollision from
the effect of the Coulomb force on an outgoing electron imme-
diately after ionization. For a single ionization event and in the
absence of recollision, we showed that a simple classical model
can reproduce the role of the Coulomb force in photoconductive
sampling. Recollisions increase the complexity of the process,
but they also provide an additional gatingmechanism that makes
NPS more sensitive at frequencies above 1 PHz.

APPENDIX

Appendix A: Photoconductive Sampling in the
Strong-Field Approximation

We describe atomic photoionization by solving the time-dependent
Schrödinger equation (TDSE) in the dipole approximation:

i 𝜕
𝜕t
|Ψ⟩ = (Ĥatom(t) − d̂ ⋅ E(t))|Ψ⟩ (A1)

which we have written in atomic units using the length gauge; Ĥatom is the
Hamiltonian describing the unperturbed atom, E(t) is an external electric
field (at the position of the atom), and d̂ is the electric-dipole operator. Our
goal is to find an analytical solution for the electron wave packet formed
by ionization, evaluate the x component of its average electron momen-
tum ⟨p̂⟩, and then obtain Equations (6)–(12) from the delay dependence
of ⟨px⟩. We accomplish this goal by using the strong-field approximation
(SFA), where the interaction of a free electron with the external electric field
is considered to be much more important than its Coulomb interaction
with the ion. If we omit Ĥatom(t) in Equation (A1), it has a well-known an-
alytical solution: the Volkov states. At any moment in time, a Volkov state
is an eigenstate of the momentum operator, |p⟩. The eigenvalue p and the
phase of the state, however, change with time. Using Volkov states to apply
the S-matrix method to solve Equation (A1) yields, in first approximation,
the following well-known[22] expression for the wave packet produced by

ionization:

lim
t→∞

|Ψ(t)⟩ = −i∫ d3p |p⟩∫ ∞

−∞
dt′ e−

i
2 ∫ ∞

t′ [p+A(t′)]2 dt′eiIpt
′

× ⟨p + A(t′)|d ⋅ E(t′)|Ψ0⟩ (A2)

where |Ψ0⟩ is the initial state, which is the atomic ground state in our case,
and Ip is the atomic ionization potential. Equation (A2) neglects the de-
pletion of the initial state, that is, it is valid only for small ionization proba-
bilities. The equation also neglects ionization via intermediate transitions
to excited bound states (resonance-enhanced multiphoton ionization).

The x component of the drift electron momentum is, by definition,⟨px⟩ = limt→∞⟨Ψ(t)|p̂x|Ψ(t)⟩. With the aid of Equation (A2) and the nor-
malization condition ⟨p|p′⟩ = 𝛿(p − p′), we obtain

⟨p̂x⟩ = ∫ d3p′ (ex ⋅ p
′)∬

∞

−∞
dt1 dt2

{
e
i(t2−t1)Ip+

i
2 ∫ t2

t1
dt′ [p′+A(t′)]2

×
(
E(t1) ⋅ d

∗(p′ + A(t1)
))(

E(t2) ⋅ d
(
p′ + A(t2)

))}
(A3)

where the dipole transition matrix element is defined as d(p) = ⟨p|d̂|Ψ0⟩.
From this point on, we consider the gate and probe fields to be polar-
ized along the z- and x-axes, respectively. Let us change the integration
variables to t = (t2 + t1)∕2, T = (t2 − t1)∕2, and p = p′ + exAx(t). In polar
coordinates, we obtain

⟨p̂x⟩ = 2∬
∞

−∞
dt dT ∫

∞

0
dp p2 ∫

𝜋

0
d𝜃 sin 𝜃 ∫

2𝜋

0
d𝜙

×
{
ei𝛼(t,T,p,𝜃,𝜙)(p sin 𝜃 cos𝜙 − Ax(t))

×
(
E(t − T) ⋅ d∗

(
p + A(t − T) − exAx(t)

))
× (E(t + T) ⋅ d (p + A(t + T) − exAx(t)))

}
(A4)

with

𝛼(t, T, p, 𝜃,𝜙) = 2IpT + 1
2 ∫

t+T

t−T
dt′

{
p2 + A2z (t

′) +
(
Ax(t

′) − Ax(t)
)2

+ 2p
(
Az(t

′) cos 𝜃 +
(
Ax(t

′) − Ax(t)
)
sin 𝜃 cos𝜙

)}
(A5)

Let us define

𝚫(t, t′) = Az(t + t′)ez + [Ax(t + t′) − Ax(t)]ex (A6)

Δ̄x(t, T) = ∫
T

−T
dt′

(
Ax(t + t′) − Ax(t)

)
(A7)

𝛽(t, T, p) = exp
{
iΦ(t − T, t + T, p) + i

2 ∫
t+T

t−T
dt′ Δ2

x (t, t
′)
}

(A8)

where Φ is given by Equation (12). We can rewrite the exponential term in
Equation (A4) using the Jacobi–Anger expansion

ei𝛼(t,T,p,𝜃,𝜙) = 𝛽(t, T, p)
∞∑

n=−∞
inJn

(
p sin 𝜃Δ̄x(t, T)

)
ein𝜙 (A9)

Now we can take the limit of a weak probe pulse by demanding that ⟨p̂x⟩
must depend linearly on Ex(t) and Ax(t). As a first step, we expand the
Bessel functions into Taylor series and keep only the terms that are linear
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with respect to the probe field:

∞∑
n=−∞

inJn
(
p sin 𝜃Δ̄x(t, T)

)
ein𝜙

=
∞∑

n=−∞

∞∑
m=0

inein𝜙(−1)m

m!(n +m + 1)!

(
pΔ̄x sin 𝜃

2

)2m+n

≈ 1 + ip sin 𝜃Δ̄x(t, T) cos𝜙. (A10)

Using this approximation for ei𝛼(t,T,p,𝜃,𝜙) in Equation (A4) and eliminating
further terms that are nonlinear with the probe field, we arrive at the fol-
lowing equations:

⟨p(SFA)x ⟩ = ⟨p1⟩ + ⟨p2⟩ + ⟨p3⟩ (A11)

⟨p1⟩ = −2∫
∞

−∞
dt Ax(t)∫

∞

0
dp∫

𝜋

0
d𝜃 p2 sin 𝜃∫

∞

−∞
dT 𝛽(t, T, p)Z0(t, T, p, 𝜃)

(A12)

⟨p2⟩ = 2i∫
∞

−∞
dt∫

∞

0
dp∫

𝜋

0
d𝜃 p4 sin3 𝜃∫

∞

−∞
dT 𝛽(t, T, p)Δ̄x(t, T)Z2(t, T, p, 𝜃)

(A13)

⟨p3⟩ = 2∫
∞

−∞
dt∫

∞

0
dp∫

𝜋

0
d𝜃 p3 sin2 𝜃 ∫

∞

−∞
dT 𝛽(t, T, p)

×
{
X1(t, T, p, 𝜃) + X∗

1 (t,−T, p, 𝜃)
}

(A14)

In these equations, we have introduced the following notation

Zn(t, T, p, 𝜃) = Ez(t − T)Ez(t + T)

×∫
2𝜋

0
d𝜙 cosn 𝜙 d∗z

(
p + 𝚫(t,−T)

)
dz
(
p + 𝚫(t, T)

)
(A15)

Xn(t, T, p, 𝜃) = Ez(t − T)Ex(t + T)

×∫
2𝜋

0
d𝜙 cosn 𝜙 d∗z

(
p + 𝚫(t,−T)

)
dx
(
p + 𝚫(t, T)

)
(A16)

From these equations, we want to obtain an analytical expression for
the ionization rate that satisfies Equation (2), which we write in atomic
units as

p(SFA)x (𝜏) = −∫
∞

−∞
Γ(t − 𝜏)Ax(t) dt (A17)

To explicitly account for the gate-probe delay 𝜏, we substitute Ez(t)
with Ez(t − 𝜏) and Az(t) with Az(t − 𝜏) in Equations (A6)–(A16). Equa-
tion (A12) already has the desired form: it is an integral over time, where
the integrand is the product of Ax(t) and a function that depends on
𝜏 once the substitutions are performed. For the matrix elements, it is

valid to assume that dz
(
p + 𝚫(t, t′)

)
= dz

(
p + Az(t − 𝜏)ez +

(
Ax(t + t′) −

Ax(t)
)
ex
)
≈ dz

(
p + Az(t − 𝜏)ez

)
if max |Ax(t)| ≪ max |Az(t)|. These as-

sumptions immediately yield Equation (7).
To derive Equation (8), we additionally need to exchange the integrals

over t and t′ in Equation (A13) to obtain the desirable form.

The derivation of Equation (9) also involves the change in the order of
integrals in Equation (A14), but it requires an additional step: since the
probe pulse is represented by its electric field (rather than vector poten-
tial) in Equation (A14), we write Ex(t) = −A′x(t) and integrate by parts to
obtain an expression where Ax(t) appears in the integrand of the outer-
most integral.

Because of the integration over T in Equations (7)–(9), the ionization
rate at time t depends on the ionizing field before and after t. However,
the integrand is a rapidly oscillating function, and the frequency of its os-
cillations increases with |T|, especially in the limit of tunneling ionization.
Therefore, only a small interval of T centered at T = 0 makes a significant
contribution to ΓSFA.

The plot ofΓSFA(t) in Figure 2may appear counter-intuitive: the function
has long oscillatory tails that extend into the area where the gate field is
zero. The frequency of these oscillations is close to the atomic ionization
potential. We observe this behavior only in ⟨p3(𝜏)⟩ and Γ3(t), and it ap-
pears in ⟨p3(𝜏)⟩ only if the probe pulse is capable of single-photon ioniza-
tion. Unlike their counterparts (⟨p1(𝜏)⟩, ⟨p2(𝜏)⟩, Γ1(t), and Γ2(t)), ⟨p3(𝜏)⟩
and Γ3(t) involve not only dz(p) but also dx(p), which is responsible for
transitions driven by the probe pulse. These observations suggest that
the quantum interference between the wave packets formed by the sole
gate and probe pulses is responsible for the oscillations in the drift veloc-
ity that do not require the pulses to overlap. Let us illustrate this mech-
anism by considering the following two Gaussian wave packets evolv-
ing without any influence from the ionic potential or an external electric
field:

⟨p|Ψgate(t)⟩ = 2

√
2a31
𝜋3

e−a1p
2
e−iIp𝜏e−i

p2

2 (t−𝜏)

⟨p|Ψprobe(t)⟩ = 2

√
2a32
𝜋3

e−a2(p−exp0)
2
e−i

p2

2 t (A18)

We assume that the two wave packets are formed by a gate pulse that ar-
rives at time t = 𝜏 and a probe pulse that arrives at t = 0, so that the initial
state accumulates a phase of −Ip𝜏 between the pulses. Furthermore, we
assume that the wave packet formed by the probe pulse, ⟨p|Ψprobe(t)⟩,
propagates along the x axis with an average momentum of p0. The aver-
age momentum for the superposition of the two wave packets does not
depend on t, but it depends on 𝜏:

⟨px(𝜏)⟩ = ⟨Ψgate(t) + Ψprobe(t)|p̂x|Ψgate(t) + Ψprobe(t)⟩
= p0 +

16
𝜋3

(a1a2)
3∕2 ∫ d3p pxe

−a1p2 e−a2(p−exp0)
2
cos

(
Ip𝜏 −

p2

2
𝜏

)
(A19)

The integral can be taken analytically and, for large values of |𝜏|, we get
the following approximation:

⟨px(𝜏)⟩ ≈ p0

⎛⎜⎜⎜⎝1 − 64
√
2𝜋−3∕2a3∕21 a5∕22 e−a2p

2
0

cos
(
Ip𝜏 −

𝜋

4

)
𝜏5∕2

⎞⎟⎟⎟⎠ (A20)

We see that even though the field of the gate pulse exerts no force along
the x-axis, the electron wave packet created by the pulse can interfere with
that created by the probe pulse making the residual current depend on the
gate-probe delay.

The interference results in oscillations with a frequency of Ip. As the
delay increases, the amplitude of these oscillations decreases according
to 𝜏−5∕2.
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Figure A1. The approximation of Γ3(t) at the end of the gate pulse by
cos(Ipt + 𝜑)∕t5∕2, which describes the interference of wave packets inde-
pendently formed by the gate and probe pulses.

Although the probe field does not explicitly enter the expression for
Γ3(t), this part of the gating function describes this kind of interference
because

p3(𝜏) = −∫
∞

−∞
Γ3(t − 𝜏)Ax(tb) dt (A21)

for an arbitrary probe pulse. In Figure A1 we show that Γ3(t) indeed has
the cos(Ipt + 𝜑)∕t5∕2 asymptotic behavior.

Appendix B: The Ionization Probability in our SFA
Model

Here we sketch the proof that the integral of Γ1(t), defined by Equa-
tion (7), is the ionization probability by the gate pulse within the SFA if the
ground-state depletion is negligible. Let us repeat the same derivation as
in Appendix A, but without the probe pulse (A = Azez) and with the unity
operator, 1̂, in the place of p̂x . This derivation must produce the ionization
probability in the form of an integral over time:

lim
t→∞

⟨Ψ(t)|1̂|Ψ(t)⟩ = ∫
∞

−∞
Γgate(t) dt = ∫ d3p′ ∬

∞

−∞
dt1 dt2

×
{
e
i(t2−t1)Ip+

i
2 ∫ t2

t1
dt′ [p′+ezAz(t′)]2

× Ez(t1)d
∗
z

(
p′ + ezAz(t1)

)
Ez(t2)dz

(
p′ + ezAz(t2)

))}

= 2∫
∞

−∞
dt∫

∞

−∞
dT ∫

∞

0
dp p2 ∫

𝜋

0
d𝜃 sin 𝜃 ∫

2𝜋

0
d𝜙

×
{
eiΦ(t−T,t+T,p)Ez(t − T)d∗z (p + ezAz(t − T))

× Ez(t + T)dz (p + ezAz(t + T))} (B1)

Obviously,

Γgate(t) = 2∫
∞

0
dp p2 ∫

𝜋

0
d𝜃 sin 𝜃 ∫

∞

−∞
dT

×
{
eiΦ(t−T,t+T,p)Ez(t − T)Ez(t + T)

×∫
2𝜋

0
d𝜙 d∗z (p + ezAz(t − T)) dz (p + ezAz(t + T))

}
(B2)

which is equivalent to Equation (7).
If Γ1 is the rate that, once integrated, yields the ionization probability,

what are then the roles of Γ2 and Γ3? If limt→±∞ Az(t) = 0, it is obvious
that

∫
∞

−∞
Γ3(t) dt = 0 (B3)

In our numerical simulations, we also see that the integral ofΓ2(t) is orders
of magnitude smaller than that of Γ1(t). Since these two terms play no
detectable role in the absence of the probe pulse, theymust be responsible
for effects that emerge when both pulses are present, even though none
of the three rates explicitly depends on the probe pulse.

Appendix C: Classical Coulomb-Laser Correction

Let us consider the motion of a classical electron in the combined elec-
tric field of the light pulses, E(t), and the field of the singly-charged ion
placed at r = 0. In atomic units, which we use throughout this section,
the force acting on an electron at position r is equal to

F(r) = − r|r|3 − E (C1)

Solving Newton’s equation of motion, r̈ = F
(
r(t)

)
, we can calculate the

velocity that a classical electron acquires in the limit t → +∞. Subtract-
ing from this value the velocity that an electron would acquire in the ab-
sence of the interaction with the ion, we obtain the classical correction
due to Coulomb-laser coupling, Δvclass, which depends on the gate-probe
delay 𝜏. For a weak probe pulse, we expect a linear relationship between
Δvclass(𝜏) and Ex(t). Indeed, if |x| ≪ |z| and y = 0, then the x component
of the Coulomb force equals

− x|r|3 ≈ − x|z|3 (C2)

Thus, for the electron velocity along the probe field, the approximation

v′x(t) ≈ −
x(t)|z(t)|3 − Ex(t) (C3)

is valid at least until a recollision occurs. A recollision may strongly deflect
an electron, but, for most trajectories, the electron then quickly leaves the
region of a strong Coulomb attraction, so we obtain

Δvclassx ≈ −∫
∞

t0

dt
x(t)|z(t)|3 (C4)

As long as the probe pulse is too weak to have a significant effect on z(t)
(until a recollision occurs), Δvclass is linear with respect to x(t), which is
linear with respect to Ex(t). Even though the Coulomb force decreases with
an increasing electron-ion distance, |Fx | increases with |x|, and larger val-
ues of the electron displacement along the x-axis cause larger values of
Δvclassx .

To prepare Figure 5, we solved Newtons’s equations numerically with-
out assuming small |x|. We found that a good agreement with the TDSE
simulations was possible only if we allowed the probe field to influence the
initial position of the electron trajectory, r(t0) (otherwise, the x component
of the Coulomb force is zero at t0, which underestimates the effect of the
Coulomb force on the electron’s motion along the x-axis). We chose r(t0)
to be the point where the classically forbidden region ends along the line
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that passes through r = 0 in the direction of E(t0), which is the combined
field of both pulses at the birth moment. Here is the expression for this
initial condition:

r(t0) = −
E(t0)|E(t0)|

|Ip| +√
I2p − 4|E(t0)|

2|E(t0)| (C5)

To keep our classical model as simple as possible, we did not average
over an ensemble to electron trajectories with different initial conditions.
Instead, we adjusted the initial velocity, which we took to be along the y-
axis. The results shown in Figure 5 were obtained with v(t0) = 0.5ey.
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