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Abstract: Knowledge of spatio-temporal couplings such as pulse-front tilt or curvature is
important to determine the focused intensity of high-power lasers. Common techniques to
diagnose these couplings are either qualitative or require hundreds of measurements. Here
we present both a new algorithm for retrieving spatio-temporal couplings, as well as novel
experimental implementations. Our method is based on the expression of the spatio-spectral
phase in terms of a Zernike-Taylor basis, allowing us to directly quantify the coefficients for
common spatio-temporal couplings. We take advantage of this method to perform quantitative
measurements using a simple experimental setup, consisting of different bandpass filters in front
of a Shack-Hartmann wavefront sensor. This fast acquisition of laser couplings using narrowband
filters, abbreviated FALCON, is easy and cheap to implement in existing facilities. To this end,
we present a measurement of spatio-temporal couplings at the ATLAS-3000 petawatt laser using
our technique.
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1. Introduction

High-power laser systems based on chirped-pulse amplification (CPA) nowadays reach peak
powers in excess of a petawatt [1,2]. When focused down to their diffraction limit, the light
pulses produced by these systems can reach intensities beyond 1023 W/cm2 [3]. At these extreme
intensities, matter interacting with the laser field is immediately ionized, and both electrons and
ions require a relativistic treatment, as they are accelerated to relativistic velocities within a single
laser cycle [4]. The final peak intensity does, however, depend on the spatio-temporal focusing of
the laser. In contrast to CW lasers, ultrashort lasers intrinsically have a large bandwidth, and due
to dispersion effects in amplification and propagation, different frequencies constituting the laser
pulse do not necessarily focus in the same way. This effect can be described by spatio-temporal
couplings (STCs) [5] in the far-field or equivalently by angular-spectral couplings in the near-field.
The best-known couplings are pulse-front tilt or angular dispersion, originating for instance from
wedged dispersing prisms, and pulse-front curvature, as produced by chromatic lenses [6]. A
common source of STCs in CPA laser systems are compressors, where STCs can be generated
due to misalignment or (thermal) grating deformation [7].

In many experiments these phenomena are considered as higher-order effects and are ignored.
Instead, the spatially-resolved intensity I(x, y) and wavefront φ(x, y) are measured, e.g. using
a Shack-Hartmann sensor, and are combined with a single measurement of the spectral phase
ϕ(ω), which can for instance be measured using variants of frequency-resolved optical gating
(FROG). This approximation E(x, y,ω) ≈

√︁
I(x, y) · eiϕ(x,y) · eiφ(ω) thus assumes simultaneous
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focusing of the pulse in time and space. However, in facilities that rely on ultrashort laser systems,
especially in high-power laser facilities that are built to explore the high-intensity frontier, these
effects cannot be ignored. In addition, a number of recent papers have suggested that deliberate
manipulation of the spatio-temporal focusing properties of laser pulses may be of interest for
applications such as laser-plasma acceleration [8,9].

To date, techniques for measuring spatio-temporal couplings can be divided into two types,
STC-specific measurements and general reconstruction techniques for the three-dimensional
field. The former includes, e.g., interferometric field autocorrelation to exclusively measure
pulse-front tilt (and the analogous angular chirp) [10] or far-field beamlet cross-correlation
[11] to measure pulse front tilt and curvature. The latter comprises of a variety of techniques,
e.g. SEA-TADPOLE [12], STARFISH [13], TERMITES [14,15], INSIGHT [16], bulk lateral
shearing spectral interferometry [17] and so forth. All of these techniques require some kind
of spatial or temporal scanning, typically requiring hundreds or thousands of shots for a single
measurement of the three-dimensional field. It should be mentioned that some attempts for
single-shot measurements have been made, e.g. STRIPED-FISH [18], but these have some
drawbacks such as a low measurement bandwidth or high experimental complexity.

In this paper we introduce a new approach for retrieving spatio-temporal couplings using
modal reconstruction of the spectrally-resolved wavefront. This method requires significantly less
measurement points than the aforementioned scanning techniques. Based on these requirements,
we design and demonstrate FALCON, a new measurement device that is easy to operate, fast
in computation, works with only a few shots and is robust in the reconstruction of the modes
of interest. The paper is structured as follows: In Section 2. we introduce the theory of modal
laser field decomposition and describe an implementation of phase retrieval based on matrix
inversion. In Section 3. we present the setup for an experimental demonstration, followed by
proof-of-principle measurements with a low-power oscillator and with the ATLAS petawatt
laser in Section 4. Section 5. summarizes our findings and gives an outlook on future research
directions.

2. Theory of modal reconstruction

2.1. Laser Field Decomposition

A general laser pulse field in a plane of observation E(x, y,ω) can be described by a spectral
intensity I(x, y,ω) and a spatio-spectral phase Φ(x, y,ω):

E(x, y,ω) =
√︁
(I(x, y,ω)) · exp (iΦ(x, y,ω)). (1)

As already mentioned in the introduction, a common approximation is to describe the
spatio-spectral phase as a combination of the spectrally-averaged wavefront φ(x, y) and the
position-independent spectral phase ϕ(ω). The latter is usually described as a Taylor series,

ϕ(ω) =
∞∑︂

n=0

(ω − ω0)n
n!

·
(︃
∂nϕ

∂ωn

)︃
ω=ω0

, (2)

where ω0 is the central frequency. The first terms of this series are known as the carrier envelope
phase (ϕ0), group delay (ϕ1) and group delay dispersion (ϕ2). Meanwhile, the wavefront is
typically described in terms of Zernike polynomials [19]

φ(x, y) =
∑︂
m,n

am,nZm
n (x, y). (3)

The Zernike coefficients are defined in polar coordinates on a unit circle and the lower-order
coefficients can easily be related to the descriptions introduced by Seidel [20]. The zeroth order,
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piston, is technically identical to the carrier envelope phase at the particular frequency, while first
order shift terms are known as tip and tilt. Being two-dimensional, the second order terms take
the forms of astigmatism, defocus and oblique (45◦) astigmatism.

We can expand these definitions to the general case of a spatio-spectral phase. In accordance
with the definitions for both spectral phase and wavefront, we define the spatio-spectral phase
Φ(x, y,ω) as a spectral Taylor-expansion of the spatial Zernike polynomials

Φ(x, y,ω) =
∑︂
m,n,i

ai
m,n(ω − ω0)iZm

n (x, y). (4)

As illustrated in Fig. 1, Eq. (4) describes the spectral evolution of each Zernike mode.
Using these definitions, the spectral phase is defined as the spectrally-resolved piston term
ϕ(ω) =

(︂∑︁
i ai

0,0(ω − ω0)i
)︂

Z0
0 and the wavefront is given by φ(x, y) = ∑︁

m,n a0
m,nZn

m(x, y). In
addition, we can readily describe all common spatio-temporal couplings such as pulse-front tilt,
which is determined by the a1

−1,1 and a1
1,1 coefficients. We would like to mention that there also

exists a three-dimensional extension to the Zernike polynomials that could also be used to express
Φ(x, y,ω), but we have opted against its use in order to maintain better compatibility of our base
coefficients with the common definitions of the spectral phase and spatio-temporal couplings.

ω
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a10,0
a20,0

Φ(x, y,ω) = ∑
m,n,i

aim,n(ω − ω0)iZmn (x, y)

φ(x, y) = ∑
m,n
am,nZmn (x, y) .
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Fig. 1. Visualization of the proposed basis functions to describe the spatio-spectral phase,
where each Zernike mode is expanded in frequency with a Taylor series.

2.2. Modal retrieval algorithm

In the following we present how the spatio-spectral basis functions defined in the previous
sections can be used to reconstruct spatio-temporal couplings. Our analysis is based on the idea
that many wavefront sensors (Shack-Hartmann, Shearing Interferometer, etc.) yield the local
derivatives of the wavefront (∂φ/∂x, ∂φ/∂y) as a measurement result.

In a zonal reconstruction approach, single pixels that are independent of their neighbouring
pixels are used as basis functions, meaning that the final wavefront is a superposition of delta
functions Φ(x, y) = ∑︁

u,v au,vδ(x − xu, y − yv). Here, the local gradients have to be integrated and
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then combined to result in the wavefront map with a resolution equal to the microlens array size.
In contrast, the modal approach [21,22] reconstructs Zernike coefficients by fitting them to the
measured phase gradients. This can be done by using the derivatives of the Zernike modes in
cartesian coordinates, which we calculate up to the required Zernike order using the recurrence
relations presented by Andersen [23]. This leads not only to faster computation times, but also to
more reliable results, as there are less intermediate steps required.

While modal reconstruction is well-known in the case of wavefront analysis [21,22], it has to
our knowledge never been applied to the more general case of reconstructing the spatio-spectral
phase. Using the spatio-spectral base expansion of the phase given by Eq. (4) we can easily
extend the method and fit coefficients to spatio-temporal couplings such as pulse-front tilt given
measurements of the phase derivatives at different frequencies. In order to implement this scheme
a linear equation system is set up:

∇⃗Φ = T · a⃗ (5)

where ∇⃗Φ is a vector containing the the phase derivatives ∂ϕ
∂x and ∂ϕ

∂y at all positions (x⃗, y⃗) along
the x and y axis, respectively. T is the forward transfer matrix that connects basis functions with
the wavefront gradients and a⃗ is a vector containing all the included coefficients of the basis
functions. In the single-frequency case, on a 2 × 2 grid and including conventional Zernike
coefficients up to tip and tilt, the equation system takes the form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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=
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·
⎛⎜⎜⎜⎜⎝

a0,0

a1,−1

a1,1

⎞⎟⎟⎟⎟⎠
(6)

This equation has to be solved for a⃗. As T is non-square, this can be done by finding the
pseudo-inverse, T+, which is at the same time the optimal solution to the least squares formulation
of the problem, i.e. min{| |T+(T · a⃗ − ∇⃗Φ)| |2}.

To also retrieve spatio-temporal coupling parameters, the forward matrix T must be extended
by adding columns according to the desired amount of spatio-spectral parameters and by adding
rows for each individual frequency-selective measurement. To give an explicit example, extending
Eq. (6) to include the corresponding first-order spatio-spectral coefficients using measurements
with two different spectral response functions f1(ω) and f2(ω), respectively, results in the following
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equation system:
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(7)

where ω̃i
k =

∑︁
ω(ω − ω0)ifk(ω) describes the average of the spectrum seen by each lenslet for the

i-th spatio temporal coupling order and ai
m,n is the coefficient of the i-th order Taylor expansion

of the Zernike mode am,n, as defined in Eq. (2) and (4). The function fk(ω) is therefore the
normalised transmission function of the k-th measurement. Note that terms including Z0

0 are
shown in both examples for completeness, but as these terms correspond to the spectral phase
ϕ(ω), they have to be measured separately.

The general T matrix will have 2 × nxy × nf × na entries, with nxy being the number of
measurement points, nf the number of frequency data points and na being the number of
coefficients used in the reconstruction. Restricting the reconstruction to only a selected amount of
Zernike and spatio-temporal coupling orders reduces the number of free parameters significantly
and makes this a highly over-determined inverse problem. Not only does this significantly reduce
the sensitivity to noise, but as we will see later, it also allows us to retrieve spatio-temporal
coupling coefficients using only a few frequency-selective measurements. Assuming that the
measurement noise acting on the individual phase gradients is normally distributed, we can
estimate that the retrieval accuracy improves with ∼ 1/√N, with N being the ratio of measurement
points nxy to free parameters na. Furthermore, using the forward transfer matrix T we can validate
the retrieval accuracy and compare the reconstructed wavefront gradients for a given frequency
range with the measured ones, e.g. using the mean squared error (MSE) or median absolute
deviation (MAD) as figures of merit.
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3. Experimental setup

As discussed in the previous section, we can use the modal reconstruction approach to directly
determine spatio-temporal couplings in a laser, based on spectrally-resolved measurements of
the two-dimensional wavefront gradient. There exist various experimental methods to obtain
such a measurement and in the following we will focus on the combination of Shack-Hartmann
wavefront sensors with both imaging Fourier transform spectroscopy and bandpass filter sets.
The use of filters is particularly convenient because of its speed and simplicity. Keeping with a
longstanding tradition, we name this method FALCON, as an acronym for fast acquisition of
laser couplings using narrowband filters. [24]

3.1. Shack-Hartmann sensor

For our proof-of-principle measurement, we use home-built Shack-Hartmann (SH) wavefront
sensors [25]. The sensor consists of a microlens array that focuses parts of an incident laser
beam as beamlets onto a camera chip. The resulting image is a grid-like spot pattern. Using the
assumption that the high-order aberrations across one lenslet are negligible, the phase is entirely
dominated by the local pointing (tip and tilt) contributions. In this case the local wavefront
gradient over a lenslet of pitch d is given by the horizontal and vertical displacement (∆x,∆y) of
each spot’s center of mass at a given distance z, typically measured in focus, multiplied by the
wavenumber k ⎛⎜⎝

∆φx/d
∆φy/d

⎞⎟⎠ = k
z
⎛⎜⎝
∆x

∆y
⎞⎟⎠ . (8)

Note that this equation uses the small-angle approximation tan(θ) ≃ θ, which is valid since the
displacement is much smaller than the focal length f .

We have used two different fused silica microlens arrays (Thorlabs MLA150-5C and MLA300-
14AR) with pitches of d = 150 µm and d = 300 µm and focal lengths of f = 5.6 mm
and f = 14.2 mm, respectively. The microlenses focus onto a camera sensor (Basler ace
acA2040-35gm or IDS UI-5244LE-M-GL), which in our case has a pixel size of 3.45 µm
and 5.3 µm, respectively. The center of mass of each lenslet’s focus can be determined with
approximately 0.1 pixel accuracy, meaning that the minimum angular deviations that can be
resolved are 0.345 µm/14.2 mm = 24 µrad with the Basler camera and the 300 µm array
and 0.53 µm/5.6 mm = 95 µrad with the IDS camera and 150 µm array. The corresponding
wavefront resolutions over the lenslet size are 7.2 nm and 14 nm, respectively, which is thus on
the order of λ/100 to λ/50. Note that the angular resolutions have to be multiplied with the
(de-)magnification factor in an imaging setup, where higher demagnification corresponds to
higher angular resolution.

3.2. Imaging Fourier Transform Spectroscopy

Imaging Fourier Transform Spectroscopy (IFTS) is a common technique to obtain spatially-
resolved spectral information. The method is prominently used in recent spatio-temporal
characterization methods such as INSIGHT and TERMITES [26]. An IFTS setup typically
consists of a Michelson interferometer with one mirror placed on a motorized stage to introduce
a time delay between the pulse and its replica. Both pulses are subject to spectral interference,
the result of which is measured using a camera sensor, see e.g. Jeandet [26] for a more detailed
discussion.

To retrieve spectral information via Fourier Transform Spectroscopy, the delay τ needs to be
evenly sampled. Here we use an active-feedback piezo motor with optical encoder (Newport
CONEX-SAG-LS16P). From interferometric measurements we determined that the encoder has
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a precision of ∼ 5 nm when moving equal steps. If not taken into account, this jitter will change
the instantaneous phase and result in an apparent frequency jitter after the Fourier transform.

To mitigate this issue, we monitored the spectral interference during each measurement using
a fiber-coupled spectrometer (Ocean Optics USB4000). We then used the Hilbert transform
to extract the instantaneous phase for all wavelengths of the spectrum. Multiplied with the
wavelength, this yields a precise measurement of the actual delay and we then re-sample all
measurements onto a regular delay grid using third-order spline interpolation. This procedure
greatly improves the measurement accuracy of the local spectrum and solves one of the most
pertinent problems with Michelson-based IFTS. To ensure stability of the Hilbert transform
the step size should be a fraction of the wavelength and we typically use steps of ∆x = 25 nm,
corresponding to an optical delay of ∆τ = 2∆x/c ≃ 0.167 fs.

With a total scan range of 80 µm we get a delay range of T = 534 fs, which means that 3200
measurements are necessary, yielding a measurement time of almost an hour at 1 Hz repetition
rate. The frequency resolution in IFTS is given as half the inverse of the delay range ∆f = 1/2T ,
whereas the frequency range F is determined by the step size as F = 1/2∆τ. For the parameters
stated above, this evaluates to ∆f = 0.94 THz and F = 3 PHz, with an equivalent wavelength
resolution of about ∆λ = 2 nm around λ0 = 800 nm.

3.3. Bandpass filters

The IFTS measurement described above provides high-fidelity information at the cost of a large
number of acquisitions. However, to determine the dominant low-order STCs only, it is sufficient
to measure the wavefront only at a few discrete frequencies. For example, two frequencies would,
in principle, suffice for estimating the pulse front tilt.

To test this simplified approach, nine bandpass filters covering the spectral range from
760 nm to 840 nm were acquired. We used two different types of bandpass filters, each with
FWHM bandwidth of 10 nm. The exact transmission curves fn(ω) were measured using a
spectrophotometer, see Fig. 2. The selected filters cover the entire spectral range of the ATLAS-
3000 laser, which we characterize with the diagnostic in Section 4.2. The bandpass filters are
housed in a custom designed filter wheel, driven by a stepper motor, which can hold up to ten
separate filters. One slot was left empty to measure the transmission without spectral filtering.

Fig. 2. Left: Photograph of the experimental setup consisting of bandpass filters housed
in a custom motorized wheel and a home-built Shack-Hartmann sensor. Right: Measured
transmission curves of nine bandpass filters using a spectrophotometer.

While the setup is conceptually simple to realize, in an actual implementation one has to take
specific care regarding its calibration. As in any Shack-Hartmann setup, the retrieval of the
wavefront can only be done relative to a reference measurement. This reference is acquired by
focusing a broadband light source onto a pinhole with a diameter smaller than the focal spot size.
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The spatially-filtered beam transmitted through the pinhole then has a known spherical wavefront.
By placing an achromatic lens at focal length distance, we can collimate this beam and we define
the resulting wavefront as our reference. We take such reference images for all used filter settings
to account for the transmission error of each filter.

It was found that the attenuating filters and individual spectral filters used in our setup imprint
an individual, non-negligible disturbance onto the beam’s wavefront. This disturbance is also not
homogeneous over the entire surface of one filter, but can vary significantly when the beam is
transmitted through another position of the filter. Because of this, the wavefront calibration has
to be done for every filter used in the setup. Furthermore, it has to be considered that the filters
are not fixed in front of the sensor, but are mounted on a rotating filter wheel. Thus, one needs
to ensure that the filters can be reproducibly moved to the same positions as during calibration,
which in our case is ensured by using a precise stepper motor with an angular resolution of 0.25′.

3.4. Frequency-resolved Shack-Hartmann sensor

The combination of a Shack-Hartmann sensor with either technique described in Sections 3.2 and
3.3 yields frequency-resolved Shack-Hartmann images that form an array with the dimensions
(x, y,ω). In IFTS this is a two-step process, as we first take measurements with different delays in
the Michelson interferometer and then use a Fourier transform to obtain frequency-resolved sensor
images. Bandpass filters are simpler, as they directly yield spectrally-filtered Shack-Hartmann
images. In both cases, frequency-filtered slices from the three-dimensional measurement array
are evaluated as described in 3.1 and the obtained gradients are then used to determine the
frequency-resolved Zernike coefficients using the retrieval algorithm as described in 2.2.

4. Measurement results

4.1. Angular chirp introduced by wedges

In order to test our retrieval method, we used a broadband fs-oscillator as input and measured
the angular chirp introduced by two different BK7 wedges with apex angles of α1 = 11◦22′

and α2 = 18◦9′. The wedges are places in the collimated laser beam, directly in front of the
Shack-Hartmann sensor (using the Thorlabs MLA300-14AR microlens array with the Basler ace
acA2040-35gm camera). The experimental setup is sketched in Fig. 3, including the Michelson
interferometer used for IFTS as described in Section 3.2. For the setup combining IFTS with a
Shack-Hartmann sensor, the result at 800 nm was taken as a reference; for the FALCON setup
separate reference images were taken. For the FALCON setup we used a subsection of the filters
described in Section 3.3, namely the 760 nm, 790 nm, 800 nm, 820 nm filters and an additional
850 nm filter.

An advantage of this setup is that the angular dispersion and hence, pulse-front tilt, introduced
by a wedge can be accurately calculated using simple geometrical optics. A beam of light
entering a BK7 wedge perpendicular to its first surface will be refracted at an angle ξ(λ) =
arcsin (n(λ) · sin(α)) − α. At a central wavelength of 800 nm, the theoretical value of the angular
dispersion for BK7 is approximately 4.12 µrad nm−1 and 7.05 µrad nm−1 for α1 = 11◦22′

and α2 = 18◦9′, respectively, with an uncertainty of ±0.1 µrad nm−1 related to the alignment
precision of the wedge surface.

As shown in Fig. 4, the results from the IFTS and the FALCON measurement agree very
well with these theoretical estimates. The angular chirp using the direct modal retrieval and
the IFTS is 4.07 µrad nm−1 and 7.08 µrad nm−1, respectively, which is in agreement with the
theoretical prediction and within the estimated uncertainty. Using the FALCON measurement
the reconstructed values are 3.77 µrad nm−1 and 7.34 µrad nm−1, respectively. We attribute the
discrepancy between the two measurement to the fact that the FALCON was not self-referenced.
Instead, we measured the wavefront with and without the wedge, keeping the Shack-Hartmann
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b

a

Fig. 3. Experimental setup for spatio-temporal characterization using IFTS and a Shack-
Hartmann sensor shown for the wegde measurement in (a) and for the ATLAS 3000
characterization in (b). The angular chirp introduced by a wedge (W) is characterised by the
FALCON setup and IFTS. The additional optical components are labeled M for mirror and
BS for beamsplitter.

sensor in the same position. As the wedge shifts the beam only a smaller part of the signal could
be evaluated, increasing the influence of noise in this particular configuration. Additionally, the
IFTS took 3200 measurements, the FALCON only one measurement for each of the five filters.
We thus expect that the IFTS has an approximately 25 times smaller measurement uncertainty.

4.2. Characterization of STCs in a petawatt-class laser

Having verified our method in the previous section, we are now presenting a characterization of
spatio-temporal couplings of the ATLAS-3000 laser at the Centre of Advanced Laser Application
(CALA) in Garching, Germany, using the FALCON setup described in Section 3.3.

The ATLAS-3000 laser is a high-peak-power Ti:Sa laser system delivering a maximum pulse
energy of 90 Joules before compression, at a repetition rate of 1 Hz. The laser pulse can either be
delivered with full energy for particle acceleration experiments, or for diagnostic purposes, with
greatly reduced energy by using an attenuator placed behind the final amplifiers and before the
laser beam expander and compressor. For the measurements presented in the following, the laser
was operated at 19.5 Joules before compression. In order to implement our diagnostic we had
to ensure that the attenuated laser beam still contains the entire laser spectrum. In the past, the
attenuated beam was the leakage through two dielectric mirrors coated for the laser wavelength,
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Apex Angle 𝛼1 = 11◦22′ 𝛼2 = 18◦9′

Theoretical [μrad nm−1] 4.12 ± 0.1 7.05 ± 0.1

IFTS+SH [μrad nm−1] 4.07 7.08

FALCON [μrad nm−1] 3.77 7.34

Fig. 4. Theoretical values and measured values as well as the modal fits for the angular
chirp relative to the central wavelength of 800 nm as introduced by a 11◦22′ and a 18◦9′
wedge. Top shows the result for the IFTS measurement, bottom for the FALCON setup with
only five filters used.

which predominantly transmitted the edges of the laser spectrum. The new attenuator uses the
reflection of two uncoated wedges and thus mostly conserves the laser spectrum.

Measurements are performed on a de-magnified image of the laser’s near field. For this purpose
we use a telescope consisting of a spherical mirror with f1 = 10 m focal length, otherwise used
for electron acceleration experiments, combined with an f2 = 0.2 m achromatic doublet lens. The
laser enters the spherical mirror under a small angle and the resulting aberrations are pre-corrected
with a deformable mirror. The telescope images a plane of the near field approximately 5 m
before the spherical mirror. The intermediate focus of the telescope has a size of approximately
50 µm diameter. To calibrate the phase measurement we place a motorised pinhole with 20 µm
diameter at the focus. The beam is fully imaged on the in-vacuum Shack-Hartmann sensor with
a beam diameter of 4 mm, corresponding to a de-magnification of 1 : 50. Using the Thorlabs
MLA150-5C microlens array and the IDS UI-5244LE camera with a pixel size of 5.3 µm, we
estimate an angular sensitivity of the order of 2 µrad in this measurement configuration.

For each filter setting, five wavefront images are taken at 1 Hz repetition rate and averaged.
The acquisition time for an entire measurement is thus of the order of a minute. The resulting
Shack-Hartmann images can be evaluated in two different ways. One can either fit only the
coefficients of interest, e.g. a1

−1,1 and a1
1,1 of the vertical and horizontal angular chirp, respectively.

Or, in order to describe the spectral-phase as accurately as possible, by fitting many coefficients
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until the validation error reaches the resolution limit. We use the median absolute deviation
(MAD) as a figure of merit, as it yields the same units as the resolution and is less sensitive to
noise outliers than the MSE.

For the simple case, the frequency-independent term of the wavefront was fitted up to the 24th
order of Zernike polynomials, whereas only the coupling terms coefficients for the pulse front tilt
and the pulse front curvature were added. The validation error for this case isσMAD = 0.130 pixels,
which is of the same order as our estimated resolution limit. The values for both the horizontal
and vertical angular chirp are 0.024 µrad nm−1, which is close to the resolution limit of the
diagnostic. Over a bandwith of 50 nm and a focal length of 10 m this corresponds to a shift of
the focus of about 12 µm, which is less than the typical focal spot size of ∼ 50 µm in an f /50
configuration. The pulse front curvature is −0.0078 mrad2/nm.

Fitting up to 24th order Zernike and the spatio temporal couplings of 10 orders of Zernikes up
to the ω5 term further lowers the validation error to σMAD = 0.116 pixels. This indicates a small,
but non-negligible effect of higher-order coupling terms. Fig. 5 shows how the wavefront differs
to the wavefront at 800 nm. Spatio-temporal couplings are below λ/10 in the wavelength region
between 780 and 820 nm - where the spectral intensity of the laser is the largest - and hence, are
well compensated.

Pulse Front Tilt [𝜇rad/nm] 0.023

Pulse Front Curvature [mrad2/nm] -0.0068

Fig. 5. Top: Retrieved spectrally-resolved phase maps of the ATLAS-3000 laser for four
different wavelengths as difference to the wavefront at the central wavelength of 800 nm.
Bottom: Retrieved values for the pulse front tilt and curvature parameters.

5. Summary and outlook

We have presented a new retrieval method for spatio-temporal couplings using a modal recon-
struction approach. Due to the denser forward matrix, our method is more robust to noise than
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established zonal reconstruction methods and allows us to retrieve spatio-temporal coupling
coefficients using only a small number of frequency-selective measurements. The filter-based
FALCON method is simple to implement and wavefront sensors in existing facilities can easily
be upgraded at low cost. The device was implemented at the ATLAS-3000 petawatt laser to
characterize spatio-temporal couplings. Furthermore, we have introduced and benchmarked an
implementation based on imaging Fourier transform spectroscopy, which allows for precision
measurements, albeit at the prize of significantly longer measurement times.

While our discussion has concentrated on the retrieval of spatio-temporal couplings of the phase
in the nearfield, our device is equally capable of measuring amplitude couplings. Combined with
a single measurement of the spectral phase it can be easily used to retrieve the spatio-temporal
electric field. Future developments may include a further increase in wavefront resolution,
adaptive coefficient selection in the fitting process based on sparsity constraints [27], and the
development of a single-shot version of the method to explore shot-to-shot fluctuations of STCs.
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