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Abstract: Knowledge of spatio-temporal couplings such as pulse-front tilt or curvature is
important to determine the focused intensity of high-power lasers. Common techniques to
diagnose these couplings are either qualitative or require hundreds of measurements. Here
we present both a new algorithm for retrieving spatio-temporal couplings, as well as novel
experimental implementations. Our method is based on the expression of the spatio-spectral
phase in terms of a Zernike-Taylor basis, allowing us to directly quantify the coefficients for
common spatio-temporal couplings. We take advantage of this method to perform quantitative
measurements using a simple experimental setup, consisting of different bandpass filters in front
of a Shack-Hartmann wavefront sensor. This fast acquisition of laser couplings using narrowband
filters, abbreviated FALCON, is easy and cheap to implement in existing facilities. To this end,
we present a measurement of spatio-temporal couplings at the ATLAS-3000 petawatt laser using
our technique.
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1. Introduction

High-power laser systems based on chirped-pulse amplification (CPA) nowadays reach peak
powers in excess of a petawatt [1,2]. When focused down to their diffraction limit, the light
pulses produced by these systems can reach intensities beyond 1023 W/cm2 [3]. At these extreme
intensities, matter interacting with the laser field is immediately ionized, and both electrons and
ions require a relativistic treatment, as they are accelerated to relativistic velocities within a single
laser cycle [4]. The final peak intensity does, however, depend on the spatio-temporal focusing of
the laser. In contrast to CW lasers, ultrashort lasers intrinsically have a large bandwidth, and due
to dispersion effects in amplification and propagation, different frequencies constituting the laser
pulse do not necessarily focus in the same way. This effect can be described by spatio-temporal
couplings (STCs) [5] in the far-field or equivalently by angular-spectral couplings in the near-field.
The best-known couplings are pulse-front tilt or angular dispersion, originating for instance from
wedged dispersing prisms, and pulse-front curvature, as produced by chromatic lenses [6]. A
common source of STCs in CPA laser systems are compressors, where STCs can be generated
due to misalignment or (thermal) grating deformation [7].

In many experiments these phenomena are considered as higher-order effects and are ignored.
Instead, the spatially-resolved intensity I(x, y) and wavefront φ(x, y) are measured, e.g. using
a Shack-Hartmann sensor, and are combined with a single measurement of the spectral phase
ϕ(ω), which can for instance be measured using variants of frequency-resolved optical gating
(FROG). This approximation E(x, y, ω) ≈

√︁
I(x, y) · eiϕ(x,y) · eiφ(ω) thus assumes simultaneous
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focusing of the pulse in time and space. However, in facilities that rely on ultrashort laser systems,
especially in high-power laser facilities that are built to explore the high-intensity frontier, these
effects cannot be ignored. In addition, a number of recent papers have suggested that deliberate
manipulation of the spatio-temporal focusing properties of laser pulses may be of interest for
applications such as laser-plasma acceleration [8,9].

To date, techniques for measuring spatio-temporal couplings can be divided into two types,
STC-specific measurements and general reconstruction techniques for the three-dimensional
field. The former includes, e.g., interferometric field autocorrelation to exclusively measure
pulse-front tilt (and the analogous angular chirp) [10] or far-field beamlet cross-correlation
[11] to measure pulse front tilt and curvature. The latter comprises of a variety of techniques,
e.g. SEA-TADPOLE [12], STARFISH [13], TERMITES [14,15], INSIGHT [16], bulk lateral
shearing spectral interferometry [17] and so forth. All of these techniques require some kind
of spatial or temporal scanning, typically requiring hundreds or thousands of shots for a single
measurement of the three-dimensional field. It should be mentioned that some attempts for
single-shot measurements have been made, e.g. STRIPED-FISH [18], but these have some
drawbacks such as a low measurement bandwidth or high experimental complexity.

In this paper we introduce a new approach for retrieving spatio-temporal couplings using
modal reconstruction of the spectrally-resolved wavefront. This method requires significantly less
measurement points than the aforementioned scanning techniques. Based on these requirements,
we design and demonstrate FALCON, a new measurement device that is easy to operate, fast
in computation, works with only a few shots and is robust in the reconstruction of the modes
of interest. The paper is structured as follows: In Section 2. we introduce the theory of modal
laser field decomposition and describe an implementation of phase retrieval based on matrix
inversion. In Section 3. we present the setup for an experimental demonstration, followed by
proof-of-principle measurements with a low-power oscillator and with the ATLAS petawatt
laser in Section 4. Section 5. summarizes our findings and gives an outlook on future research
directions.

2. Theory of modal reconstruction

2.1. Laser Field Decomposition

A general laser pulse field in a plane of observation E(x, y, ω) can be described by a spectral
intensity I(x, y, ω) and a spatio-spectral phase � (x, y, ω):

E(x, y, ω) =
√︁

(I(x, y, ω)) · exp(i� (x, y, ω)). (1)

As already mentioned in the introduction, a common approximation is to describe the
spatio-spectral phase as a combination of the spectrally-averaged wavefront φ(x, y) and the
position-independent spectral phase ϕ(ω). The latter is usually described as a Taylor series,

ϕ(ω) =
∞∑︂

n=0

(ω − ω0)n

n!
·

(︃
∂nϕ

∂ωn

)︃
ω=ω0

, (2)

where ω0 is the central frequency. The first terms of this series are known as the carrier envelope
phase (ϕ0), group delay (ϕ1) and group delay dispersion (ϕ2). Meanwhile, the wavefront is
typically described in terms of Zernike polynomials [19]

φ(x, y) =
∑︂
m,n

am,nZm
n (x, y). (3)

The Zernike coefficients are defined in polar coordinates on a unit circle and the lower-order
coefficients can easily be related to the descriptions introduced by Seidel [20]. The zeroth order,
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piston, is technically identical to the carrier envelope phase at the particular frequency, while first
order shift terms are known as tip and tilt. Being two-dimensional, the second order terms take
the forms of astigmatism, defocus and oblique (45◦) astigmatism.

We can expand these definitions to the general case of a spatio-spectral phase. In accordance
with the definitions for both spectral phase and wavefront, we define the spatio-spectral phase
� (x, y, ω) as a spectral Taylor-expansion of the spatial Zernike polynomials

� (x, y, ω) =
∑︂
m,n,i

ai
m,n(ω − ω0)iZm

n (x, y). (4)

As illustrated in Fig. 1, Eq. (4) describes the spectral evolution of each Zernike mode.
Using these definitions, the spectral phase is defined as the spectrally-resolved piston term
ϕ(ω) =

(︂∑︁
i ai

0,0(ω − ω0)i
)︂

Z0
0 and the wavefront is given by φ(x, y) =

∑︁
m,n a0

m,nZn
m(x, y). In

addition, we can readily describe all common spatio-temporal couplings such as pulse-front tilt,
which is determined by the a1

−1,1 and a1
1,1 coefficients. We would like to mention that there also

exists a three-dimensional extension to the Zernike polynomials that could also be used to express
� (x, y, ω), but we have opted against its use in order to maintain better compatibility of our base
coefficients with the common definitions of the spectral phase and spatio-temporal couplings.

Fig. 1. Visualization of the proposed basis functions to describe the spatio-spectral phase,
where each Zernike mode is expanded in frequency with a Taylor series.

2.2. Modal retrieval algorithm

In the following we present how the spatio-spectral basis functions defined in the previous
sections can be used to reconstruct spatio-temporal couplings. Our analysis is based on the idea
that many wavefront sensors (Shack-Hartmann, Shearing Interferometer, etc.) yield the local
derivatives of the wavefront (∂φ/∂x, ∂φ/∂y) as a measurement result.

In a zonal reconstruction approach, single pixels that are independent of their neighbouring
pixels are used as basis functions, meaning that the final wavefront is a superposition of delta
functions � (x, y) =

∑︁
u,v au,vδ(x − xu, y − yv). Here, the local gradients have to be integrated and
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then combined to result in the wavefront map with a resolution equal to the microlens array size.
In contrast, the modal approach [21,22] reconstructs Zernike coefficients by fitting them to the
measured phase gradients. This can be done by using the derivatives of the Zernike modes in
cartesian coordinates, which we calculate up to the required Zernike order using the recurrence
relations presented by Andersen [23]. This leads not only to faster computation times, but also to
more reliable results, as there are less intermediate steps required.

While modal reconstruction is well-known in the case of wavefront analysis [21,22], it has to
our knowledge never been applied to the more general case of reconstructing the spatio-spectral
phase. Using the spatio-spectral base expansion of the phase given by Eq. (4) we can easily
extend the method and fit coefficients to spatio-temporal couplings such as pulse-front tilt given
measurements of the phase derivatives at different frequencies. In order to implement this scheme
a linear equation system is set up:

∇⃗� = T · a⃗ (5)

where ∇⃗� is a vector containing the the phase derivatives ∂ϕ
∂x and ∂ϕ

∂y at all positions (x⃗, y⃗) along
the x and y axis, respectively. T is the forward transfer matrix that connects basis functions with
the wavefront gradients and a⃗ is a vector containing all the included coefficients of the basis
functions. In the single-frequency case, on a 2 × 2 grid and including conventional Zernike
coefficients up to tip and tilt, the equation system takes the form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ϕ
∂x

|︁|︁|︁
(0,0)

∂ϕ
∂x

|︁|︁|︁
(0,1)

∂ϕ
∂x

|︁|︁|︁
(1,0)
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∂x
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·
⎛⎜⎜⎜⎜⎝

a0,0

a1,−1

a1,1

⎞⎟⎟⎟⎟⎠
(6)

This equation has to be solved for a⃗. As T is non-square, this can be done by finding the
pseudo-inverse, T+ , which is at the same time the optimal solution to the least squares formulation
of the problem, i.e. min{| |T+(T · a⃗ − ∇⃗� )| |2}.

To also retrieve spatio-temporal coupling parameters, the forward matrix T must be extended
by adding columns according to the desired amount of spatio-spectral parameters and by adding
rows for each individual frequency-selective measurement. To give an explicit example, extending
Eq. (6) to include the corresponding first-order spatio-spectral coefficients using measurements
with two different spectral response functions f1(ω) and f2(ω), respectively, results in the following
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equation system:
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(7)

where ~ωi
k =

∑︁
ω(ω − ω0)ifk(ω) describes the average of the spectrum seen by each lenslet for the

i-th spatio temporal coupling order and ai
m,n is the coefficient of the i-th order Taylor expansion

of the Zernike mode am,n, as defined in Eq. (2) and (4). The function fk(ω) is therefore the
normalised transmission function of the k-th measurement. Note that terms including Z0

0 are
shown in both examples for completeness, but as these terms correspond to the spectral phase
ϕ(ω), they have to be measured separately.

The general T matrix will have 2 × nxy × nf × na entries, with nxy being the number of
measurement points, nf the number of frequency data points and na being the number of
coefficients used in the reconstruction. Restricting the reconstruction to only a selected amount of
Zernike and spatio-temporal coupling orders reduces the number of free parameters significantly
and makes this a highly over-determined inverse problem. Not only does this significantly reduce
the sensitivity to noise, but as we will see later, it also allows us to retrieve spatio-temporal
coupling coefficients using only a few frequency-selective measurements. Assuming that the
measurement noise acting on the individual phase gradients is normally distributed, we can
estimate that the retrieval accuracy improves with ∼ 1/√

N, with N being the ratio of measurement
points nxy to free parameters na. Furthermore, using the forward transfer matrix T we can validate
the retrieval accuracy and compare the reconstructed wavefront gradients for a given frequency
range with the measured ones, e.g. using the mean squared error (MSE) or median absolute
deviation (MAD) as figures of merit.


















