PHYSICS

Electron microscopy of electromagnetic waveforms

A. Ryabov1,2 and P. Baum1,2,*

Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample’s oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available.

Electron microscopy works at wavelengths 100,000× smaller than that of light and therefore allows studying matter and materials with subatomic resolution (1, 2). With added temporal resolution, ultrafast reaction paths in physical and chemical transitions can also be recorded (3, 4).

Rather elusive for electron microscopy, however, have been electrodynamic phenomena, although oscillating currents and fields are fundamental to the operation of almost any information processing device or metamaterial. Based on differential phase contrast (5, 6), ptychography (7), or laser-electron energy exchange techniques (8), electron microscopy studies on electromagnetism could reveal electrostatic field distributions (9–11), ultrafast carrier diffusions (12, 13), or cycle-averaged nanophotonic dynamics (14–16), but so far not the fundamental electromagnetic waveforms with their rapidly oscillating field vectors.

We merged the electron microscope’s supremacy in matter characterizations with a subcycle and subwavelength access to electromagnetic phenomena (Fig. 1). Femtosecond electron pulses (Fig. 1, blue) at 70 keV central energy are generated by pulsed-laser photoemission (27). The electron wave packets (18) are further compressed in time by a terahertz field (Fig. 1, red) in grazing incidence to a foil (19). Alternatives here could be beam blanking (20), microwave compression (18), photon-gating (21), or ponderomotive bunching (22). A magnetic lens (Fig. 1, gray) widens the beam for passage through the sample with close-to-zero divergence. The proof-of-principle sample is a metal split-ring resonator (Fig. 1, yellow), which is a typical building block for metamaterials (23) or surfaces (24) with optical effects otherwise not available (25, 26). The resonator with ~250-μm radius is excited with a single-cycle, phase-locked electromagnetic pulse of 0.1 to 0.8 THz bandwidth (27). It propagates along the z axis with a linear polarization oriented ~5° off the y axis. The electron pulse duration at the sample is ~15 times shorter than the excitation half-cycle. An objective magnetic lens (Fig. 1, gray) magnifies the shadowed electron beam onto a screen (Fig. 1, green). Some intentional defocus makes the scheme sensitive to local beam deflections (Fig. 1, dotted lines) and allows concluding from the distorted screen images, taken at a sequence of electron/pulse delay times, to the time-frozen electrodynamics in the sample.

First results are shown in Fig. 2, obtained with the excitation field depicted in Fig. 2A and at a magnification of about 5×. The electron pulses are characterized by streaking (19) and have 80-fs duration (Fig. 2B). The resonator, which was laser-machined into 30-μm-thick aluminum foil (Fig. 2C), shows some imperfections, in particular fringy edges and off-center circles. An isosurface of the time-dependent shadow pattern deformations reveals pronounced temporal oscillations (Fig. 2D). The raw images (shown...
for a subset of pump-probe delays (in Fig. 2E) become distorted in a self-overlapping way before returning to the original at later times (movie S1). Another example of raw data is shown in movie S2.

For analyzing our experiment, we denote the spatiotemporal electric and magnetic fields around the resonator with \(E(x, y, z, t) \) and \(B(x, y, z, t) \), respectively, where \(v_{\text{ci}} = 0.53 c \) is the electron velocity (i.e., speed of light), \(\tau_{\text{d}} \approx 80 \text{ fs} \) (full width at half maximum) is the electron pulse duration, \(f_{\text{max}} \approx 0.8 \text{ THz} \) is the highest frequency excited, \(D_z \approx 30 \text{ mm} \) is the mode thickness along the \(z \) axis, and \(\alpha_{\text{em}} \approx 60 \text{ mrad} \) (root mean square) is the beam divergence at the sample (~20 nm source emittance and ~340 nm beam radius). We make these approximations: (i) \(\tau_{\text{d}} \ll f_{\text{max}} \), the electron pulses are much shorter than a wave cycle; (ii) \(D_z \ll f_{\text{max}} \), subcycle transition time; (iii) \(\alpha_{\text{em}} = 0 \), the probe beam is collimated; (iv) two-dimensional fields \(E_{y}(x, y, t) \) and \(B_{y}(x, y, t) \) suitably describe the resonator response; and (v) magnetic fields are negligible. Conditions (i) and (ii) are essential to the concept, and (iii) to (v) are specific to the particular geometry. With \(m_e \) and \(e \) the electron mass and charge, respectively, we obtain for the change in angles \(\alpha_{\text{xy}} \) at each position in the beam, at each pump-probe delay \(\tau \):

\[
\alpha_{x,y}(x, y, t) = -\frac{e E_{x,y}(x, y, t) D_z}{m_e v_{\text{ci}}^2} \tau
\]

Each ray in the electron beam profile acquires a local-field–dependent momentum kick that is directly proportional to the local waveform, frozen in time at the chosen probe delay.

On the screen, electrons from faraway locations can end up at the same positions, and inversion is nonobjective. We therefore measured for each pump-probe delay a batch of screen images, in which the excitation peak field strength \(E_{\text{exc}} \) is gradually increased from zero to the available maximum. Because of the collimated illumination, this method is related to measuring the evolution of the distorted beam profile along the \(x \) axis. The data set is four-dimensional and comprises 250 by 250 image pixels, 150 pump-probe delays, and 16 different excitation field strengths. At a 50-kHz pump-probe repetition rate, the total accumulation time is ~1 hour. We calculated \(\alpha_{x,y}(x, y, t) \) for each delay step with a least-square fitting algorithm (17) and \(E_{x,y}(x, y, t) \) via Eq. 1.

Shown in Fig. 3A are three vector-field snapshots at 2.8, 3.2, and 3.8 ps delay, respectively, as a subset of the full results (movie S3). The triangular tips denote the vectorial direction, and field strength is encoded in color and size. Some high-frequency temporal noise was diminished with a low-pass Gaussian filter at 1 THz. The vector field at 2.8 ps shows three local maxima (Fig. 3A, top, right, and left). We see an asymmetry in \(x \), a predominantly radially polarization everywhere, and at each angle, a radially decreasing field strength. The peak field is 7 V/\(\mu \text{m} \), which is ~3.5 times higher than the driving field. Shown in Fig. 3B are the time-dependent electric fields at two selected positions (Fig. 3A, white circles), and the time-dependent polarization is plotted in Fig. 3B, right. The fields initially follow the single-cycle excitation pulse, but after ~4 ps, when the excitation has diminished, they evolve into slower oscillation cycles with decaying amplitude. Fitting each such time trace with a damped-harmonic oscillator model reveals a map of central frequencies (0.27 to 0.30 THz), dampings (3 to 6 ps), and group delays (~0.1 ps). These ranges indicate that a single delocalized mode is predominant after the excitation.

An analysis of the collective carrier motion causing the observed near-field dynamics is shown in Fig. 3C. The surface charge density \(\sigma = e_{\text{e}} E_{\text{ex}} \) is plotted along a path around the inner edge of the resonator. The peak charge is ~400 \(e/\mu \text{m}^2 \), and ~20 \(e/\mu \text{m}^2 \) are detectable above the noise. Three spatial regions are evident, one at the top (±180°) and two others left and right of the gap (±45°). The dynamics around the gap extend by more than ±90° and the phase is shifted with respect to the top region. Some features in Fig. 3C have a tilt, indicating in part an azimuthally traveling excitation, which is also observable in the raw data and result movies (movies S1 and S3, respectively). Circular motion ceases after ~4 ps, and the remaining dynamics are mostly symmetric with the \(x \) axis. It appears that the excitation first localizes at the gap and top half, while subsequently creating a spread out, rather symmetric, and longer lived mode with mostly radial polarization.

Next, we used our waveform electron microscopy to characterize a rectangular aperture and butterfly resonator, which are typical elements for field enhancement in optics. A snapshot at 2.2 ps delay of the field in the slit (730 by 100 \(\mu \text{m}^2 \)) is shown in

![Fig. 2. Waveform microscopy results. (A) Electric field for sample excitation. (B) Electron pulse characterization (19). (C) Shape of the split-ring resonator. (D) Isovector of the time-dependent shadow images. (E) Subset of raw images on the screen (full results in movies S1 and S2).](image)

![Fig. 3. Space-time-field results in a split-ring resonator. (A) Time-frozen electric field vectors at three delay times (full results in movie S3). Scale bar, 100 \(\mu \text{m} \). (B) Time-dependent fields (left) and polarizations (right) at locations (1) and (2) in (A). (C) Space-time map of the surface carrier density at the inner edge [(A), white dashed line).](image)
charge, which is usually detrimental in ultrafast time is essentially a consequence of the electron lines at the center.

Damping, ~5 ps). The field enhancement at 2.8 ps solutions. That nevertheless a series of oscillation boundary conditions nor enforces harmonic-oscillator decomposition neither assumes any electromagnetic polarization in modes 2 and 3. Singular value decomposition. The first four modes are depicted in Fig. 4C; further ones have no clear shape or time structure anymore. Three of the modes have a series of maxima that are almost equidistantly distributed over the slit length. Mode 1b is different and has a shape with vortex polarization; we attribute this to residual magnetic field effects (17) and a slight tilt of the structure with respect to the electron beam. The time traces from the decomposition matrix are shown in Fig. 4D. Mode 1 is centered at 0.20 THz, mode 2 at 0.39 THz, and mode 3 at 0.54 THz. Cuts through the modes along the slit’s long axis at center are shown in Fig. 4E. Evident are one, two, and three spatial maxima, respectively, but with some asymmetries and slightly elliptical polarization in modes 2 and 3. Singular value decomposition neither assumes any electromagnetic boundary conditions nor enforces harmonic-oscillator solutions. That nevertheless a series of oscillation orders with dispersion and nontrivial phase relations can be identified is a virtue of the complete spatial, temporal, and vectorial data set obtained with wavefront electron microscopy. In the butterfly-shaped resonator (Fig. 4F and movie S5), there is only one mode excited (frequency, 0.3 THz; damping, ~5 ps). The field enhancement at 2.8 ps is ~9 close to the metal and ~6 in the middle, which is lower than desirable, because the rounded crests of our structure apparently disperse the field lines at the center.

Charge is exploited as a local, sensitive, direction- al, and noninvasive probe of electromagnetic field cycles. We estimate the angular and spatial resolutions achievable in a state-of-the-art instrument at few-nanometer resolution by invoking a ray-optical analysis (17). The result is plotted in fig. S4 in dependence on defocus. Letting the spatial resolution degrade by only a factor of two from the optimum value is already sufficient for an angular resolution below 20 μrad. Via Eq. 1 and assuming a 100-nm-deep structure along the z axis, we obtained a measurable field strength of ~0.0026 V/nm or ~1 V per 40 nm, which overlaps with the conditions in working electronic or plasmonic circuitry. In the experiment, the angular resolution was 60 to 80 μrad (17), which is close to a em = 60 μrad of the beam. At reasonable signal-to-noise levels, the illumination’s uncorrelated divergence determines the angular resolution. The ultimate limit with coherent femto- second emitters (27) and a wave-based analysis (6, 7) is defined by the de Broglie wavelength of the electrons.

Magnetic fields, which are important in negative-index metamaterials or memory devices, can be revealed and separated from the electric-field deflections by making two experiments at different electron velocities; the electric parts of the Lorentz force scales proportionally to 1/ve2, whereas the magnetic deflection follows a 1/ve law. Energy- filtered imaging can measure forward momentum changes and, in combination with tomography, reveal the complete electric and magnetic field vector fields in space and time. Surface studies with a scanning electron microscope are also feasible, given its sensitivity to (transient) surface voltages, energy losses, or secondary electron trajectory asymmetries.

Microwave-compressed (28), photon-gated (21), or deflection-selected (20) electron pulses are approaching the few-femtosecond regime of pulse duration. This allows waveform imaging at multiterahertz frequencies, faster than any electronic devices available. Metamaterials operate at light- wave frequencies, at which ~1-fs resolution is required for subcycle sampling. Recently, attosecond electron pulse trains (28) have been realized in an electron microscope (29). With cycle-synchronous excitation and probing (28), waveform electron microscopy will enable a direct visualization of nanophotonic phenomena at lightwave frequencies. Isolated attosecond electron pulses may potentially be generated via single-electron wavepacket compression (28) or ponderomotive effects (22) and will be useful for studying nonlinear or strong-field phenomena that are not reversible between adjacent excitation cycles.

In principle, any light-matter interaction starts with atomic-scale charge displacements, and waveform electron microscopy at subatomic resolution (5, 6) could potentially reveal those motions. More straightforward, however, will be studies of collective carrier dynamics and field effects in nanoscale devices—for example, in electronics, metamaterials, nanophotonic circuitry, near-field sensors, or light-harvesting nanostructures. That waveform imaging and shape characterization now require only one instrument—the electron microscope—will likely be advantageous for such investigations.

REFERENCES AND NOTES
Connections between groundwater flow and transpiration partitioning

Reed M. Maxwell1* and Laura E. Condon2

Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

Evapotranspiration (ET) is the largest terrestrial water flux, typically accounting for more water than runoff and for about 60% of precipitation (2). It contributes a substantial portion of the global land-energy budget (2) as latent heat (LH) flux, which affects regional climate (3). Evapotranspiration commonly refers to the combination of all evaporation (E) from bare soil, water bodies, plant canopy, and sublimation from snow, and transpiration (T) through plant stomata during photosynthesis. Here we focus on the partitioning of ET into bare soil E and plant T. Because T depends on plant processes, whereas E depends on shallow soil moisture and energy availability, these two factors respond differently to physical drivers and stress. Disentangling these fluxes over large scales is a key step toward improved understanding and prediction of watershed dynamics, especially when considering future stresses.

Connectivity between the surface and the subsurface provides a fundamental control on water-energy fluxes and partitioning (4). Connections between the water table and evapotranspiration have been shown in model simulations (5-9) and observations of regional systems (10). Although theory to estimate and simulate evapotranspiration has evolved much over past decades (11), lateral groundwater flow has yet to be incorporated in continental-scale partitioning estimates (22). Quantifying the role of groundwater is important, because if partitioning is tied to water table depth and lateral flow, accurate predictions of future water availability will require a more detailed understanding of the underlying processes controlling groundwater surface water interactions than are currently included in most Earth system simulators. Current research on partitioning relies on either isotopic approaches or land surface models (13). These are fundamentally different methods, but both make critical assumptions about groundwater contributions to T and simplify groundwater surface water interactions. Discrepancies in partitioning estimates remain, and some have suggested that it may be systematically underestimated by current Earth system models (13, 14).

We used a continental-scale integrated hydrology model simulation to study the role that lateral groundwater flow plays in evapotranspiration partitioning (15). We used the ParFlow model (16, 17), which couples groundwater and surface water flow with vegetation processes and snow dynamics (7, 18) to solve a complete water and energy balance (figs. S1, S2, and S4 (15)). The domain covers 6.3 million km² and encompasses major river basins in North America (including the Mississippi, Colorado, and Ohio basins; see Fig. 1 and fig. S3 (15)). Simulations were run for one year at hourly resolution driven by reconstructed meteorology. Transient simulations were initialized using the results of a prior steady-state model over the same domain (19) and additional transient model initialization (tables S1 and S2 (15)). The model was compared to 1.2 million transient observations of stream flow, groundwater, and snow, and was shown to match observed behavior (figs. S5 to S20 (15)).

This simulation generated roughly 1.3 trillion outputs over the 1-year period, covering all key components of the water energy budget. Two variables that exemplify hydrologic stores and land-energy fluxes—water table depth and LH flux (the energy counterpart to ET)—show many scales of detail within these output fields (Fig. 1). For example, although groundwater is generally shallower in the more humid eastern region of the domain and deeper in arid western regions, laterally convergent flow drives local variability, creating shallow water tables in river valleys that can supply surface water export. We see similar patterns in LH flux, large-scale trends also driven by climate gradients, yet nested hillslope-scale fluctuations persist.

The integrated model we used provides the ability to explicitly evaluate interactions between variables that are excluded from other global approaches (i.e., water table depth and individual land-energy flux components such as T and E). For example, the ratios of plant transpiration to total evapotranspiration (T/ET) are calculated directly from model outputs and compared to compiled stand-scale (34) and global (4, 20, 21) isotopically based partitioning estimates [Fig. 2, A and B (15)]. We see broad agreement between model simulations and estimates across scale; the domain-averaged T/ET of 62 ± 12% agrees with recent global isotopically derived estimates (4, 14, 20, 21).

To determine the role of lateral groundwater flow in these partitioning estimates, we performed a second simulation that is identical to the base case but allowed only vertical water movement, with no topographic influences or lateral flow. This approach is similar to current practice in land surface models (15). This “no lateral flow” simulation resulted in a domain-averaged T/ET...