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Zusammenfassung

Bei lasergetriebenen Plasmabeschleunigern, den sogenannten Laser wakefield accelerators
(LWFAs), treibt ein hochintensiver ultrakurzer Laserpuls eine Plasmawelle. Die dadurch
hervorgerufene Ladungsseparation generiert beschleunigende Felder von mehreren hundert
GVm−1. Diese übertreffen damit jegliche auf konventionelle Art erzeugten Felder um
etwa vier Größenordnungen. Durch deren Ausnutzung zur Beschleunigung von geladenen
Teilchen können die Größe und somit auch die Kosten für zukünftige Teilchenbeschleu-
niger drastisch gesenkt werden. Hiermit beschleunigte Elektronenpakete führen durch
ihre inhärent kurze Dauer von einigen Femtosekunden zu extrem hohen Spitzenströmen
von etlichen 10kA. Zusammen mit den in dieser Arbeit vorgestellten beschleunigten Ge-
samtladungen von bis zu 0.7nC stellen LWFAs mittlerweile einen vielversprechenden
Kandidaten für zukünftige Beschleunigerkonzepte dar [1]. Aufgrund ihrer ultrakurzen
Elektronenpakete sind sie zum einen eine hervorragende Quelle für hochbrillante Rönt-
genpulse über Betatronstrahlung [2, 3] bzw. Thomson-Rückstreuung und zum anderen ein
möglicher Treiber für Freie-Elektronen-Laser (FELs) [4, 5]. Um die hierfür nötigen Teil-
chenstromdichten zu erzeugen, müssen die Beschleuniger im sog. „beam-loading Regime“
arbeiten. Dort überlagern die elektrostatischen Felder der beschleunigten Teilchenpakete
die beschleunigenden Felder des Plasmas und modifizieren die Dynamik des Beschleuni-
gungsprozesses dadurch signifikant. Es ist daher überaus wichtig, ein tieferes Verständnis
für dieses kritische Regime zu entwickeln.

In dieser Doktorarbeit werden beam-loading Effekte in quasi-monoenergetischen LWFAs
der nanocoulomb-Klasse systematisch untersucht. Ein lokal und zeitlich eng begrenzter
Injektionsmechanismus führt dabei zu hoher Schuss-zu-Schuss Stabilität. Bisher für diese
Laserklasse unerreichte Gesamtladungen, spektrale Ladungsdichten und geringe Diver-
genzen werden präsentiert. Diese Eigenschaften ermöglichen den Vorstoß in ein bisher
nur spärlich untersuchtes Regime: den Übergang vom laser- zum teilchengetriebenen
Plasmabeschleuniger. Beam-loading Effekte dominieren dieses Regime und wirken sich
auf die spektrale Form der beschleunigten Elektronenpakete aus. Diese Effekte werden
untersucht und deren Wirkung sowohl auf die beschleunigten Elektronen, als auch auf ein
nachfolgend injiziertes Teilchenpaket, erklärt. In einer Pump-Probe-Konfiguration können
damit nicht nur die effektiven beschleunigenden Felder, sondern auch die Auswirkungen
des Beam-loadings auf die Teilchendynamik des Plasmas untersucht werden.



Die auf umfangreiche Simulationen gestützten Studien führen zu einem tiefen Verständnis
der zugrunde liegenden Wechselwirkungsmechanismen. Hierauf basierend wird gezeigt
werden, dass beam-loading Effekte zu einer nichtlinearen zeitlichen Änderung der Elektro-
nenenergie („Chirp“) im Phasenraum führen. Diese Nichtlinearität kann durch Einführung
eines neuen Parameters – der sogenannten Schiefe („skewness“) – beschrieben werden und
stellt eine einfache Messgröße zur Ermittlung der Stärke des Beam-loadings für diese Be-
schleunigerklasse dar. Letztendlich kann diese Nichtlinearität im Phasenraum ausgenutzt
werden, um die spektrale Bandbreite der Elektronen signifikant zu verbessern.

Das mit diesen Studien erlangte tiefe Verständnis der Teilchendynamik bildet die Basis
für die zukünftige Ausnutzung von beam-loading Effekten, um die Qualität der Elektro-
nenpakete signifikant zu verbessern und bildet den Ausgangspunkt für ein neues, hybrides
Beschleunigerkonzept.
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Abstract

In laser-driven plasma accelerators, so-called laser wakefield accelerators (LWFAs), an
ultra-short high-intensity laser pulse drives a plasma wave. The charge separation induced
by the driving laser pulse generates fields on the order of several hundred GVm−1. These
fields surpass any conventionally generated ones by four orders of magnitude. Applying
these fields for particle acceleration promises to significantly reduce the size and cost
of future accelerators. Due to their inherent short duration of a few femtoseconds, the
accelerated electron bunches feature extremely high peak currents of several 10kA. To-
gether with the accelerated total charges up to 0.7nC presented in this thesis, LWFAs are
currently regarded as promising candidates for future accelerator concepts [1]. Due to
their ultra-short electron bunches, they are on the one hand an excellent source for highly-
brilliant X-ray pulses via betatron emission [2, 3] or Thomson backscattering [6] and on
the other hand, a candidate driver for Free-Electron Lasers (FELs) [4, 5]. To generate the
required peak current densities, the accelerators have to be operated in the so-called "beam
loading regime". Here the self-fields of the accelerated particle bunches superimpose the
accelerating fields of the plasma and thus modify the acceleration dynamics significantly.
Therefore, it is of great importance to gain a deeper understanding of this critical regime.

In this doctoral thesis, beam loading effects in quasi-monoenergetic nanocoulomb-class
LWFAs are studied systematically. A locally and temporally sharply confined injection
mechanism leads to high shot-to-shot stability. Peak charges, spectral charge densities,
and low divergences unprecedented for this laser class are presented. These properties
allow for the advance to a regime only scarcely studied yet: the transition from laser- to
beam-driven plasma accelerators. Beam loading effects dominate this regime and affect the
final spectral shape of the accelerated electron bunches. These effects are studied and their
influence on accelerated as well as subsequently injected particle bunches is explained.
In pump-probe configurations, not only the effective fields but also the effects of beam
loading on the plasma dynamics can be studied.

Elicited by extensive simulations, these studies lead to a profound understanding of the
underlying interaction mechanisms. Based on these simulations, it is shown that beam
loading causes a nonlinear chirp in the electrons’ phase space. This nonlinearity can be
parametrized by introducing a new quantity – the so-called "skewness" – and constitutes



an easily accessible parameter to determine the strength of beam loading for this class of
accelerators. Ultimately, this nonlinearity in phase space can be utilized to significantly
improve the spectral bandwidth of the electron bunches.

This comprehensive study of the particle dynamics not only forms the cornerstone for
future experiments exploiting beam loading effects to significantly improve the quality of
the electron bunches but also forms the starting point for the development of a new, hybrid
accelerator concept.
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Chapter 1

Introduction

Accelerators generating ultra-relativistic particles are not only a key tool for fundamental
research in particle physics but also widely used in industrial and medical applications.
In 1919, Ernest Rutherford proposed "atomic projectiles" with energies beyond those
provided by natural radioactive sources for "probing the inner structure of the atoms and
all elements" [7]. First particle accelerators using direct current (DC) voltages like the
Cockcroft-Walton generator [8] or the Van de Graaff generator [9] were invented in the
early 1930s. The accelerated particles were limited to energies around one MeV by the
maximum breakdown field gradients these machines could handle. Nevertheless, John
Douglas Cockcroft and Ernest Walton were able to use their accelerator to perform the
first artificial nuclear disintegration in 1932, which won them the Nobel Prize in 1951
[10]. In order to reach even higher energies, Rolf Wideröe proposed a scheme of multiple,
resonantly driven radio frequency (RF) drift tubes [11]. This concept led to the invention
of the cyclotron technology few years later and still is the fundamental principle of high-
energy particle acceleration nowadays. Based on Wideröe’s ideas, the very first cyclotron
was invented by Ernest O. Lawrence in 1930 [12], for which he was awarded the Nobel
Prize in 1939 [13]. With these machines, unprecedented proton energies beyond one
MeV became feasible. The rapid accelerator development producing higher and higher
particle energies led to many discoveries in the field of particle physics, culminating in the
observation of the Higgs boson in 2012 at the Large Hadron Collider (LHC) operated by
the European Organization for Nuclear Research (CERN) [14].

Based on RF cavity resonators, these conventional accelerators are nowadays reaching
a fundamental limit: depending on the cavity’s surface quality, the vacuum breakdown
limit is reached when the accelerating fields exceed 250 MVm−1 at the maximum1 [19].
At this point, the local field strengths are high enough to expel electrons from the solid
surface into the vacuum. An exponentially growing cascade of electrons is generated upon
each subsequent RF field reversal – a phenomenon called "multipactor effect" – which

1Reliably operating accelerators typically apply accelerating field gradients up to around 100 MVm−1[15–
18].



1. Introduction

ultimately leads to a breakdown of the accelerating field (see, e.g., [16, 20]). Hence, in
common high-energy accelerators, the particles are either forced on circular orbits to pass
the same accelerating stages multiple times ("synchrotrons") or they are subjected to a
series of accelerating cavities along a linear beamline ("linear accelerators"). In the first
case, electromagnetic radiation emitted via synchrotron emission and necessary magnetic
field strengths to bend the particles’ trajectories limit the final kinetic energy. Based on
current accelerator technology, the particles’ energies can only be boosted by increasing
the sheer size of the accelerators, namely the total length of the linear accelerator or the
radius of curvature for synchrotrons. To reduce the costs and to make ultra-relativistic
particles more accessible for applications, a new accelerator technology not subjected to
the above limits is necessary.

Wakefield accelerators are widely considered a promising candidate as a future high-
gradient accelerator concept. Here, either an ultra-high intense laser pulse (LWFAs)
or a dense ultra-relativistic bunch of charged particles (plasma wakefield accelerators
(PWFAs)) expels electrons from its path of propagation through the plasma target by its
electromagnetic field. Therefore, behind the driver, a void of electrons forms. Since the
ions are orders of magnitude heavier, they are almost unaffected by the fields of the driver
and do not move. This charge separation constitutes a three-dimensional field structure in
the form of a co-propagating wake behind the driver, the so-called plasma wave, which
offers longitudinal and transverse electromagnetic fields that may accelerate and focus
charged particles. The plasma wave is not prone to the vacuum breakdown limit and hence,
field gradients beyond 100 GVm−1 are feasible. This allows the reduction of the overall
accelerator size and its costs by orders of magnitude.

The underlying concepts were theoretically proposed by Tajima and Dawson in 1979
[21] for LWFAs and Chen et al. [22] in 1985 for PWFAs. Due to the complementary
but different driver technology, both types of wakefield accelerators used to be treated
separately. Nevertheless, their development went hand-in-hand as the physics at stake is
very similar. The feasibility of laser wakefield acceleration by simulations was shown
by Joshi et al. [23] in 1984. Laser technology at that time could not produce fields
strong enough to self-inject plasma electrons into the accelerating structure, but they
were sufficient to trap externally injected electrons [24]. It was in the early 90s when
energy gain of externally injected electrons into a beat-wave-driven plasma wave was first
demonstrated [25, 26]. The invention of chirped pulse amplification (CPA) [27] in 1985
made sub-picosecond, multi-TW laser pulses available within the next decade which gave
a new impetus to the field of LWFA [28, 29] and finally led to the first laser wakefield
accelerated electrons in 1998 [30]. The next milestone in LWFA was reached in 2002
when Pukhov and Meyer-ter-Vehn [31] found a new, highly nonlinear regime in which
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the driving laser pulse blows out all electrons on its path forming a solitary bubble-like
structure behind the driver. This bubble acts as an accelerating cavity with the potential of
delivering monoenergetic electron bunches. Nowadays, all wakefield accelerators aim at
operating in this highly nonlinear regime. Exploiting the advantages of this new regime
combined with sophisticated titanium-sapphire (Ti:Sa) laser technology, three groups
simultaneously achieved a breakthrough in this respect in 2004. In their so-called Dream
Beam Papers they demonstrated for the first time the full potential of laser wakefield
acceleration by producing quasi-monoenergetic electron beams beyond 100 MeV with tens
of pC charge [32–34]. Two years later, the goal of accelerating electrons to 1 GeV in a
single LWFA stage was demonstrated [35].

With current laser technology, beam intensities around 5.5×1022 Wcm−2 can be reached
[36] and electron acceleration up to 7.8 GeV is feasible [37]. Moreover, controlled injection
mechanisms have been developed to ensure reproducible and monoenergetic electron beams
with charges beyond 1 nC [38]. Such laser plasma accelerators (LPAs) may induce currents
beyond 100 kA due to their short particle bunch length. However, at such high currents,
the self-fields of the trapped charges start to superimpose the accelerating fields of the
wake, which causes a local moderation of the accelerating force. This so-called beam
loading effect becomes stronger with increasing bunch charge and can finally alter the
key parameters of the accelerator. As we will see in the course of this work, the charge
separation induced by the optical driver is caused by the ponderomotive force, a second-
order effect that is proportional to the gradient of the spatially inhomogeneous oscillating
electromagnetic field. Beam loading effects, however, originate from the unipolar space
charge field of the particle driver and in that sense, are much more efficient in interacting
with the surrounding plasma [39]. Therefore, proper control of the beam loading effect and
the understanding of its influence on the beam characteristics is crucial for operating LPAs
in the highly-loaded regime, which is a prerequisite for driving high-brightness X-ray
sources or FELs.

The first theoretical studies of beam loading in the linear regime were published by Kat-
souleas et al. [40] in 1987, who described the effective accelerating field as a superposition
of the electron bunch’s wakefield with the one of the driver. Only the discovery of the
highly nonlinear regime fifteen years later and the advent of electron beams in the kA
range triggered further research on this effect. Based on the theoretical advances in the
first decade of the 21st century [41], Tzoufras et al. [42, 43] extended this mathematical
framework to beam loading in the nonlinear regime. They even found that trapezoidal
beam currents with the appropriate total charge may flatten the accelerating fields in a
LWFA via beam loading. In the following year, Rechatin et al. [44] conducted the first
experimental studies on beam loading effects and – albeit their particle beams were limited

3



1. Introduction

to some tens of pC – established the charge-energy correlation as characteristic feature
of beam loading. In their follow-up paper, Rechatin et al. [45] discuss the generation of
electron bunches with low energy spread and present first experimental data on the optimal
loading regime. Simulations suggest that peak charges around 20pC even out the inherent
longitudinal field gradient via beam loading. Corresponding experimental data is in good
agreement, as a scan of the peak charge in the range of 0 pC to 140 pC reveals a minimal
relative energy spread on the order of 10% for the suggested charge. Within the following
decade advanced injection techniques like self-truncated ionization injection (STII) [46,
47] or shock injection [48] matured and reproducibly delivered quasi-monochromatic
electron beams in the kA range corresponding to beam charges of hundreds of pC [38,
49]. With these particle bunches, first explorations of the intermediate regime between
laser-driven (LWFA) and purely particle-driven wakefield acceleration (PWFA) became
feasible as the self-fields of such high-current beams become non-negligible.

Systematic studies for highly-loaded beams were conducted by Guillaume et al. [50] a few
years ago, who examined the acceleration of ionization-injected, highly-charged electron
beams with charges up to 250pC. They present the beam charge and energy spectrum in
relation to either the laser energy or gas density. Based on these experiments, Couperus
et al. [49] expanded this field to quasi-monoenergetic bunches in heavily loaded wakefields.
In this regime, the accelerated charge and corresponding self-fields are high enough to
significantly alter the accelerating fields and hereby determine the acceleration dynamics.
The employed tailored STII ([46, 47]) injection scheme offers the possibility to adjust
the injected charge by varying the doping concentration of nitrogen as the high-Z gas
component. In this way, the parameters of the driving laser pulse and the plasma density
remain unchanged. Hence, differences in energy spread may be traced back to beam
loading effects alone. In their paper, Couperus et al. [49] demonstrated that beam loading
effects can be employed to improve the performance of the LWFA. Based on theoretical
predictions by Tzoufras et al. [42, 43], they identified an optimal loading condition where
the final energy spread is minimized. For a laser pulse of 64TW the measured relative
energy spread reached its minimum with ∼ 15% (full width at half maximum (FWHM))
at a bunch charge of ∼ 300pC

To assess the strength of beam loading, i.e. to determine the interaction strength of the
particle bunch with the wakefield structure, a multi-shot data set is necessary to reveal
charge-energy correlations. In the course of the work at hand, the skewness of the electron
spectrum is identified as a scalar, single-shot parameter, which allows for the quantification
of beam loading for shock front accelerators. PIC simulations support the finding that this
experimentally observed skewness is directly induced by beam loading and ensues from a
nonlinear chirp in the phase space of the accelerated electron bunch.

4



In addition, Rechatin et al. [45] observed in their experiments a reduction in the background
current the higher the charge trapped in the first wakefield bucket. This effect is theoretically
expected, as the load in the leading plasma cavity dampens the fields in the trailing periods.
However, due to their experimental setup, Rechatin et al. [45] were not able to quantitatively
measure this effect. By tailoring the gas density profile of the shock-injected Advanced
Titanium Sapphire Laser System (ATLAS)-300 LWFA, we gain the possibility of injecting
two electron bunches into subsequent plasma buckets in a "driver-witness" configuration.
This dual shock injection scheme allows for the probing of the effective accelerating
fields in the second wakefield cavity and will be used to study "inter-cavity" beam loading
effects. The two particle beams may be differentiated in the experimental data by their
final energies. Therefore, we may quantitatively examine correlations between charges
and final energies of both electron bunches in the data analysis below. Extensive particle-
in-cell (PIC) simulations with varying bunch charges in the first and second cavity support
our experimental finding that the charge trapped in the second wakefield period indeed
positively correlates with the final energy of the leading electron bunch.

However, up to now, beam loading effects between two different electron bunches were
restricted to particles sitting in locally separated buckets of the wakefield. With the only
recently presented technique of adding a second, independent injection event [51], beam
loading studies within the same wakefield bucket become feasible and are presented in
the work at hand. Modifications to the target to incorporate an additional optical injector
grant the opportunity to create two longitudinally separated electron bunches as driver-
witness pair in the leading wakefield cavity itself ("intra-cavity beam loading"). As in the
aforementioned setup, correlations between the charges and final energies of these two
electron bunches are extracted from the experimental data and discussed below. Besides
the dependencies typical for beam loading, we again find a significant influence of the first
bunch on the second one. This manifests itself as a correlation between the first bunch’s
charge and the energy of the latter. Again, the experimental data is in good agreement with
simulations, which indeed show a growing suppression of the accelerating field behind the
leading bunch the higher its charge.

This thesis aims at delivering a detailed and systematic study of beam loading effects
for single and dual-energy electron bunches. To do so, the work at hand is structured as
follows:

Chapter 2 covers the underlying physics of wakefield excitation and electron accelera-
tion. It lays the foundation to explain the influence of beam loading effects on the
acceleration process inherent to the experimental data presented in the following
chapters. From basic principles, the interaction between a driver and the gaseous
target is discussed and theoretically examined for the combination of both laser and

5



1. Introduction

particle drivers. The creation of wakefields behind the driver is deduced and various
wakefield regimes are debated. Methods to inject particles into the accelerating
phase of the wake are introduced and acceleration limits, as well as scaling laws, are
derived. This section is followed by a mathematical treatment of beam loading for
different regimes. The chapter is concluded by a comprehensive, tabular overview
of important LPA parameters and their specific values for the ATLAS-300 LWFA.

Chapter 3 gives a brief introduction to PIC simulations and presents the key concepts
of the code "Fourier-Bessel Particle-In-Cell (FBPIC)" [52]. General simulation
parameters are discussed here, whereas their specific values to model the ATLAS-
300 accelerator are transferred to the appendix.

Chapter 4 covers the basic setup and technical details of the experiment. A short
overview of the ATLAS is given, as well as a comprehensive overview of the
gas target and electron diagnostics system.

Chapter 5 is dedicated to the presentation and analysis of experimental and theoretical
data. Three different measuring campaigns and four theoretical parameter scans are
discussed. Based on these data, not only the stability of the ATLAS-300 accelerator
is deduced but also correlations between charge and energy on the one hand, and
laser and target parameters, on the other hand, are revealed. These findings are
employed in the following chapter to specifically tailor the characteristics of electron
bunches for beam loading studies.

Chapter 6 describes beam loading effects for shock front LWFAs. An experimental data
set with high shot-to-shot variations is examined for beam loading. With the help
of PIC simulations, the skewness of the electron spectrum is identified as a key
signature and parameterized to quantify the strength of beam loading. The second
part of this chapter deals with beam loading effects in longitudinally separated
electron bunches. The combination of two injection events enables the generation of
dual-energy electron bunches. Two experimental campaigns dedicated to inter- and
intra-cavity beam loading effects are analyzed and corresponding PIC simulations
are discussed. We hereby systematically extend our previous analysis to beam
loading effects between two longitudinally separated electron bunches.

Chapter 7 concludes this thesis by summarizing the main results and by giving an outlook
on the development of new types of LPAs. By employing beam loading effects,
hybrid acceleration schemes may be realized which are capable of delivering particle
beams of supreme quality.
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Chapter 2

Laser-Matter-Interaction

The interaction of light with charged particles is governed by electromagnetic forces which
are described by the theory of electrodynamics. Being the strongest infinitely ranged
fundamental force, it was studied for centuries. In the second half of the 19th century,
the physical environment and mathematical apparatus were evolved enough to formulate
a consistent electrodynamic theory. At the core of this theory stand four coupled partial
differential equations discovered by and named after James Clerk Maxwell who published
them in the 1860s [53]. Together with the Lorentz force, they cover the complete range
of electric and magnetic phenomena and accordingly also stand at the beginning of our
theoretical treatment of LPAs.

In this chapter, the theoretical framework for plasma wakefield acceleration is set up.
Starting from the basic description of electromagnetic waves, the motion of a charged
particle in a plane wave is derived. Afterward, the ponderomotive force is introduced and a
brief overview of plasma physics is given. The interaction of electromagnetic waves with a
plasma is treated in the succeeding section. On this basis, fundamental equations of LWFA
and PWFA are derived and beam loading effects for different regimes are examined. We
study the self-fields of the accelerated particle bunch, which eventually superimpose with
the main accelerating fields and – if the bunch’s current is large enough – may significantly
modify the particle dynamics during the acceleration process. In the last section, crucial
quantities for LPAs are summed up and their respective values for our experiments are
given. These are either measured or derived in the theoretical context of this chapter.

2.1. Description of Electromagnetic Waves

The theoretical concepts compiled in this chapter can be found in [54–57]. A much deeper
treatment with detailed elaborations is for example given in [56, 58, 59].



2. Laser-Matter-Interaction

In the following, we assume the electromagnetic waves to propagate in a vacuum. There-
fore, the relative permittivity εr := 1+χe as well as the relative permeability µr := 1+χm

equal 1, as both material parameters the electric χe and magnetic susceptibility χm van-
ish in vacuum. Hence, the refractive index defined by n :=

√
εrµr equals 1 and will be

neglected in the following formalism.

The behavior of electromagnetic radiation is fully governed by Maxwell’s equations [53]

∇ ·E =
ρ

ε0
, (Gauss’s law) (2.1)

∇×E =− ∂B

∂ t
, (Faraday’s law of induction) (2.2)

∇ ·B = 0, (Gauss’s law for magnetism) (2.3)

∇×B =
1
c2

∂E

∂ t
+µ0j. (Ampère’s law) (2.4)

Here, E and B are the electric and magnetic fields, whereas ρ stands for the charge
density and j is the electric current density. µ0 and ε0 denote the vacuum permeability and
the vacuum permittivity, respectively. Both constants are linked to the speed of light via
c = 1/

√
µ0ε0.

Conservation of charge is a direct consequence of Maxwell’s equations. Taking the
divergence on both sides of Eq. (2.4) and using the identity of Eq. (2.1) leads to the
continuity equation

∂ ρ

∂ t
+∇j = 0. (2.5)

For convenience, the vector and scalar potential A and φ are introduced, exploiting the
fact that ∇ · (∇×V ) = 0 for all vector fields V

B = ∇×A. (2.6)

From Eq. (2.6) and Eq. (2.2) follows, that (E+∂A/∂ t) can be expressed as gradient of a
scalar potential φ

E =− ∂A

∂ t
−∇φ . (2.7)

φ is an integration constant that is often set to zero in the case of absent charges with the
Coulomb gauge ∇ ·A= 0.
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2.1. Description of Electromagnetic Waves

These potentials are constructed such that the homogeneous Maxwell equations (Eq. (2.2)
and Eq. (2.3)) are automatically fulfilled. The inhomogeneous equations (Eq. (2.1) and
Eq. (2.4)) can be rewritten using the identity ∇× (∇×A) = ∇(∇ ·A)−∇2A in the
second case. The two relations then transform into the well-known electromagnetic wave
equations (

∇
2− 1

c2
∂ 2

∂ t2

)
φ =− ρ

ε0
, (2.8)(

∇
2− 1

c2
∂ 2

∂ t2

)
A=−µ0j, (2.9)

where we have applied the Lorenz gauge ∇ ·A = −1/c2∂φ/∂ t to decouple the second
order partial differential equations. Eq. (2.8) and Eq. (2.9) are fully equivalent to the four
equations initially introduced [58].

Analogous wave equations for the electric and magnetic field can either be derived from
these two equations or by taking the time derivative of Eq. (2.4) and inserting Eq. (2.2)
and Eq. (2.1) together with the above-mentioned vector identity. In any case, one obtains(

∇
2− 1

c2
∂ 2

∂ t2

)
E =

1
ε0

∇ρ +µ0
∂ j

∂ t
. (2.10)

If charges and currents are absent, this expression reduces to the homogeneous wave
equation (

∇
2− 1

c2
∂ 2

∂ t2

)
E = 0. (2.11)

The wave equation for the magnetic field is obtained similarly(
∇

2− 1
c2

∂ 2

∂ t2

)
B =−µ0∇×j (2.12)

and the homogeneous form reads(
∇

2− 1
c2

∂ 2

∂ t2

)
B = 0. (2.13)

9



2. Laser-Matter-Interaction

These two homogeneous equations describe electromagnetic radiation in a vacuum as an
electric and magnetic wave propagating with speed c.

The general solution to Eq. (2.11) and Eq. (2.13) is a linear superposition of plane waves
with complex amplitudes ck and ψ ∈ [E,B],

ψ(r,t) =
∫

ckei(k·r−ωt+φ) dk+ c.c.. (2.14)

φ represents an absolute phase offset, whereas the angular frequency ω is related to the
wave vector k via ω(k) = c|k|. The complex conjugate is abbreviated by c.c..

From Eq. (2.1) and Eq. (2.3) follows the perpendicularity of the fields on the wave vector

k ⊥B, (2.15)

k ⊥E, (2.16)

and Eq. (2.4) leads to

E ⊥B, (2.17)

|E|=c|B| . (2.18)

The intensity I of an electromagnetic wave is given by the cycle averaged Poynting vector1

S and can be expressed as

I :=
〈
|S|
〉
= ε0c〈E2〉 . (2.19)

2.2. Single Electron in a Plane Wave

To derive the concept of the ponderomotive force, a closer look at the basic effects of
electromagnetic fields acting upon a single charged particle is necessary. The classical and
relativistic treatment of this interaction process is given in the following.

1Details are given in the appendix section A.1.
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2.2. Single Electron in a Plane Wave

2.2.1. Classical Treatment

The equation of motion for a charged particle in an electromagnetic field is given by
Newton’s second law

dp
dt

= FL = q(E+v×B) . (2.20)

where p stand for the momentum of the particle and FL for the Lorentz force acting upon
the particle with charge q. According to Eq. (2.18) the second term on the right-hand side
may be neglected in the classical treatment, where |v| � c. Therefore, the equation of
motion becomes

dp
dt

= FL = qE. (2.21)

By integrating this equation, approximating the electromagnetic field by a plane wave
E(x,t) = Emax sin(kx−ωt) and assuming the particle to be an electron (q =−e, where e
is the elementary charge) that is initially at rest, we obtain

v =
∫ dv

dt
dt =−

∫ 1
me

eE(x,t)dt =
eEmax

me

∫
sin(kx−ωt)dt =

eEmax

meω
cos(kx−ωt)

⇒ vmax =
eEmax

meω
= ca0. (2.22)

In the last step, we have used the normalized vector potential a0 defined via

a :=
eA
mec

, (2.23)

a0 :=
eA0

mec
=

eEmax

mecω
=

eEmaxλ

2πmec2 , (2.24)

where Emax is the amplitude of the electric field, and Emax = ωA0 according to Eq. (2.7)
was used. a2 is often called normalized laser intensity. It is convenient to normalize the
electric field of electromagnetic waves according to Eq. (2.24) by giving their field strength
E in units of mecω/e.

For a0 & 1 the classical description of electron acceleration in electromagnetic field breaks
completely down (cf. Eq. (2.22)) and a relativistic treatment is necessary. Therefore, it

11



2. Laser-Matter-Interaction

turns out that a0 is a convenient quantity to distinguish between non-relativistic (a0� 1)
and relativistic regimes (a0 & 1)1.

In the plane wave approximation, the electromagnetic field of a laser pulse can be calculated
by measuring the intensity of the focal laser spot via Eq. (2.19)

I = ε0c
〈

E2
〉
=

ε0c
2

E2
max, (2.25)

For convenience, one often makes use of Eq. (2.24) and writes

I =
2πm2

ec5ε0

e2
a2

0
λ 2 ≈ 1.38×1010 W

a2
0

λ 2 = 1.38×1018 Wcm−2 a2
0(

λ [µm]
)2 , (2.26)

with me being the mass of the electron and λ the wavelength of the plane wave.

A typical parameter for ATLAS-300 during experimental campaigns was a vacuum peak
intensity around I ≈ 5.5×1018 Wcm−2 at a central wavelength of λ = 0.8µm (for more
details see section 4.1). This corresponds to a normalized vector potential of a0,vac ≈ 1.6
and a peak electric field strengths around Emax ≈ 6.4TVm−1 (cf. Table 2.2 at the very end
of this chapter for a compilation of all key parameters). Hence, a relativistic description of
our experiments is inevitable2.

Since the mass of the proton – as the lightest possible ion which may form the plasma
background – is ∼ 1836 times larger than the mass of the electron, the intensity of the
laser pulse needs to increase by a factor of ∼ 18362 (according to Eq. (2.26)) to reach the
relativistic threshold for protons. This would imply a laser intensity I of

I ≈ 18362×1.38×1018 Wcm−2/0.82 ≈ 7.3×1024 Wcm−2, (2.27)

which is two orders of magnitude beyond current laser technology [36]. Therefore, the
motion of the ionic plasma background induced by the laser pulse can be fully neglected
and, hence, the assumption of an immobile ion background is justified.

1As will be shown later (in section 2.6), for efficient particle acceleration, LWFAs are operated in the
nonlinear a0 > 1 regime.

2Note that this laser peak intensity is measured in vacuum. The corresponding normalized vector potential
is therefore denoted by a0,vac. Effects of laser-plasma-interaction – as discussed in section 2.5 – lead
to much higher intensities in th experiment. The normalized vector potential denoted by a0 takes these
effects into account. An estimate for a0 is given in Eq. (2.68).
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2.2. Single Electron in a Plane Wave

2.2.2. Relativistic Treatment

In the relativistic case, the electron’s momentum is given by

dp
dt

=
d
dt

(γmev) = FL =−e(E+v×B) (2.28)

with

γ :=
1√

1− v2

c2

=

√
1+
(
p

mec

)2

(2.29)

being the relativistic Lorentz factor. In contrast to the classical treatment, both terms on
the right-hand side of Eq. (2.28) contribute to the Lorentz force and none can be neglected.

The electron’s equation of motion can be solved for a linearly polarized electromagnetic
wave (a detailed derivation is given in the appendix, c.f. section A.2) leading to the typical
figure-8 motion in the co-moving frame (parametrized by the coordinates x′, y′ and τ ′)

kx′ =
a2

0
8

sin(2ωτ
′), (2.30)

ky′ = a0 cos(ωτ
′), (2.31)

which is plotted in Figure 2.1.

Figure 2.2 shows the electron dynamics during interaction with a plane wave. All key
parameters of the electron and their evolution during the interaction process are depicted.

The acceleration in the forward direction is due to the term v×B which transforms the
transverse velocity into a forward force. Since this force is always perpendicular to the
trajectory, the electron can only gain energy from the transverse electric field. Assuming a
laser pulse of finite duration, the electron would have the exact same energy before and
after the interaction with the electromagnetic pulse1. A net energy transfer onto the particle
is only possible with a non-vanishing spatial intensity gradient of the driver. An electron
initially placed close to the propagation axis of the laser pulse will be displaced by the
electric field and pushed into regions of lower light intensity. Here the restoring force
is smaller such that the electron cannot return to its initial position and therefore a net
displacement is achieved. Averaging over the oscillating movement leads to a drift motion
to regions of lower laser intensity. This effective force is called ponderomotive force and
will be discussed in the following.

1The generalization of this finding is subsumed under the Lawson-Woodward theorem
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Figure 2.1.: Trajectory of an electron interacting with a plane wave. In the co-moving
frame (left) the particle follows a characteristic figure-8 motion. A stronger laser driver
leads to a longitudinally more stretched trajectory. In the laboratory frame (right) the
electron is pushed forward periodically by the v×B term.
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Figure 2.2.: Electron dynamics in a plane wave. The evolution of electron parameters
during interaction with a plane wave laser field (a0 = 1.5) with electric field strength E is
shown. p̃ denotes momenta normalized by mec and the energy Ẽkin is normalized by mec2.
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2.3. Ponderomotive Force

2.3. Ponderomotive Force

The ponderomotive force is the net force that a charged particle experiences after averaging
over the fast oscillation cycles. In case of an electron this may be expressed as

FPond := me
〈
dv/dt

〉
. (2.32)

A derivation of the ponderomotive force taking into account relativistic effects is demanding
and beyond the scope of this work. A full treatment may be found in [60–62] and results in

FPond =−
mec2

2〈γ〉
∇〈a2〉=− mec2

4+a2
0

∇a2
0 =−

e2

4〈γ〉meω2 ∇Ẽ2, (2.33)

where Ẽ stands for the spatial component of the electric field1.

Since the ponderomotive force is conservative, a potential φPond fulfilling FPond =−∇φPond

can be found

φPond =
e2

4〈γ〉meω2 Ẽ
2. (2.34)

FPond is proportional to the negative gradient of the laser intensity ∇I and the laser wave-
length squared λ 2. It drives electrons away from regions of higher to regions of lower field
strengths.

2.4. Plasma Physics

So far, the interaction of a single electron with a laser pulse has been described. To extend
this analysis to electromagnetic waves propagating in and interacting with a gas of charged
particles, plasmas need to be introduced and physically defined. The following sections
are based upon [57, 63] and address this task.

1Nevertheless, by a perturbative ansatz the ponderomotive force can be derived easily to leading order as
shown in the appendix in section A.3. The result deviates from the general expression given in Eq. (2.33)
above only by missing the 1/〈γ〉 factor.
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2. Laser-Matter-Interaction

2.4.1. Basic Plasma Properties

Plasma is often called the fourth state of matter since its properties and behavior differ
significantly from those of the other three states. It typically consists of a gas of positively
charged ions and free electrons. The parameters and mechanisms introduced in the
following are suitable tools to characterize and describe this mixture of charged particles.

In the following, ne denotes the electron density, Zi and ni stand for the charge and density
of the ions. λD stands for the Debye length which will be introduced in the next section.

Plasmas are defined by the following three properties:

• The physical size L of the plasma is much larger than the Debye length L� λD.

• The number of charge carriers ND in a sphere of radius λD (Debye sphere) around a
given charged particle is large, i.e., ND = ne×4λ 3

Dπ/3� 1.

• The plasma frequency is large compared to the particle collision frequency.

The first point ensures that edge effects at the boundary of the plasma are negligible. The
second point means that collective electrostatic interactions mediated by the electrostatic
fields within the Debye sphere dominate over pairwise interactions (collision or scattering).
The last criterion guarantees that electrostatic interactions are far superior to the effects of
ordinary gas kinetics.

A plasma is called quasi-neutral when the plasma appears electrically neutral on scales
much larger than the Debye length

ne−Zini

ne
� 1.

In the so-called plasma approximation it is set ne = Zini [63].

Debye Shielding

The Coulomb force of an electric test charge acts upon the particles of the surrounding
plasma. The freely moving charged components follow the electric field lines and lead
to a shielding of the test charge. The typical distance at which the electric potential is
significantly suppressed, the so-called Debye length, is given by [63]

λD =

√
ε0kBT
nee2 , (2.35)
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2.4. Plasma Physics

and the Coulomb potential screened by this effect reads

φ(r) =− e
4πε0r

exp

(
−
√

2r
λD

)
. (2.36)

Here, T stands for the temperature and kB denotes the Boltzmann constant. Note that φ is
composed of the normal Coulomb potential which is multiplied by a shielding term that
depresses the potential exponentially with increasing radius. Both expressions are derived
in the appendix in section A.4.

Plasmas used in LWFAs with ne≈ 3×1018 cm−3 and temperatures according to Eq. (A.29)
in the range of some MeV have a Debye length on the order of microns. Hence, the Debye
sphere is densely populated and the collective behavior of the charged particles dominates.
It is therefore justified to talk of "plasma" accelerators.

2.4.2. Plasma Frequency

In the section above, we have established that electric fields in an unperturbed plasma
are effectively shielded on the scale of the Debye sphere. Nevertheless, external fields
may disturb this equilibrium and entice a dynamic reaction of the plasma particles. In the
following, we will discuss how electrons react to these fields. Due to the ∼ 2000 times
higher mass of the ions forming the positively charged background, their motion can be
neglected in the following.

Deviations from quasi-neutrality result in an electric field E entailing a force F =−eE
upon the electron. Ensuing from Newton’s second law and Eq. (2.1), the equation of
motion for the electron reads

me
d2x
dt2 =−nee2

ε0
x. (2.37)

This harmonic oscillator has the eigenfrequency

ωp =

√
nee2

meε0
. (2.38)

Once displaced by external fields, the free electrons oscillate with frequency ωp against
the ion background. If this quivering motion becomes relativistic, the electron mass me

has to be replaced by 〈γ〉me.
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2. Laser-Matter-Interaction

The corresponding wavelength is called plasma wavelength and is given by1

λp =
2πc
ωp
≈ 33.4µm× 1√

ne[1018 cm−3]
. (2.39)

2.5. Electromagnetic Waves in Plasma

Atoms exposed to external electric fields are easier to ionize since the Coulomb potential
binding the electrons to the nucleus is reduced. At laser intensities commonly used in
LWFA experiments (I > 1018 Wcm−2) the inner-atomic fields are suppressed below the
electron’s ground state potential such that electrons can leave the binding potential even
without the need to tunnel through the Coulomb barrier [59]. This so-called barrier-
suppression ionization (BSI) affects all but the most strongly bound inner electrons [57].
For hydrogen gas used in our experiments, even the pedestal of the main laser pulse is
intense enough to ionize the atoms.

In this section, we will examine the properties of electromagnetic waves propagating in
plasmas. Beginning with Maxwell’s equation, the dispersion relation and refractive index
of plasmas are derived.

2.5.1. Dispersion Relation and Refractive Index

Let’s assume a plane electromagnetic wave with E(r,t) = Re
[
Ekei(kr−ωt)

]
where ω =

2πc/λ . Taking the curl of Eq. (2.2) and exploiting the identity j =−enev, we get

∇× (∇×E) =− 1
c2 ∂

2
t E +µ0ene∂tv (2.40)

Inserting E and Eq. (2.21) the above expression becomes

k× (k×E) =

(
ω2

c2 −µ0
e2ne

me

)
E. (2.41)

1See Table 2.2 for specific experimental values.
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By exploiting the perpendicularity of Eq. (2.16) we obtain the dispersion relation [64]

k2 =
ω2

c2 −
1
c2

e2ne

ε0me

⇒ k2c2 = ω
2−ω

2
p , (2.42)

where we have used Eq. (2.38) in the last step.

The group velocity defined by vgr := ∂ω/∂k and phase velocity vph := ω/k follow directly

vgr =
∂ ω

∂k
=

ck
ω

c =: ηc < c, (2.43)

vph =
ω

k
=

ω

ck
c =:

1
η

c > c. (2.44)

The refractive index in plasma therefore is

η =
ck
ω

=

√
1−

ω2
p

ω2 . (2.45)

If the angular frequency ω of the incident light is smaller than the plasma frequency ωp,
the refractive index becomes imaginary. This means, that electromagnetic waves of this
frequency cannot propagate in such plasmas. The physical reason behind this behavior
is the following: when distorted by an external field of frequency ω , the electrons shield
deviations from quasi-neutrality if ω < ωp. For laser frequencies above ωp, the plasma
electrons are too slow to follow the oscillating electromagnetic field and the wave cannot
be shielded. This has direct consequences for the penetration of electric fields in plasmas.
Electromagnetic waves with frequencies below ωp are reflected by plasmas, whereas for
frequencies above ωp plasmas become transparent.

Analogously to Eq. (2.38), it is convenient to define the critical plasma density for incident
light of angular frequency ω according to1

ncrit :=
ω2meε0

e2 =
ω2

ω2
p

ne. (2.46)

Hence, the refractive index becomes

η =

√
1− ne

ncrit
. (2.47)

1See Table 2.2 for specific experimental values.
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Light of frequency ω can only propagate in plasmas with densities ne < ncrit. Such plasmas
are called underdense, whereas plasmas with ne > ncrit are called overdense and reflect
incident light. The critical density for Ti:Sa laser systems centered around 800nm is
ncrit ≈ 1.7×1021 cm−3, whereas typical plasma densities used in LWFAs are on the order
of ne ≈ 3.0×1018 cm−3. Hence, such plasmas are underdense and the driving laser pulse
can propagate through the gaseous target medium.

In the focus of a highly intense laser pulse, the driving potential is large enough to accelerate
plasma electrons to relativistic energies. In this nonlinear regime, the electron’s rest mass
me has to be replaced by the relativistic mass me→ 〈γ〉me.

The plasma frequency, refractive index and critical density then have to be corrected
accordingly which leads to the definition of the respective relativistic quantities, denoted
with an additional ’n’ (for ’nonlinear’)

ωp→

√
nee2

〈γ〉meε0
=

ωp√
〈γ〉

=: ωp,n, (2.48)

η →

√
1−

ω2
p

〈γ〉ω2 =: ηn, (2.49)

ncrit→
ω2 〈γ〉meε0

e2 = 〈γ〉ncrit =: ncrit,n. (2.50)

The plasma frequency and the refractive index now not only depend on the plasma density
ne and laser frequency ω but also on a via Eq. (A.27). These dependencies give rise to a
plethora of interesting effects in the nonlinear regime like ionization defocusing, relativistic
self-focusing, self-phase modulation, pulse compression or self-induced transparency [65–
71]. The effects relevant for LWFAs will be treated in the following.

2.5.2. Laser Pulse Evolution

Through Eq. (2.49) and its dependencies on the plasma density and laser intensity, the
plasma influences the propagation of the laser pulse. In the following sections, the different
effects which are relevant for LWFAs will be discussed.
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2.5. Electromagnetic Waves in Plasma

The refractive index in Eq. (2.49) depends on three parameters: the plasma density ne,
the laser wavelength ω and 〈γ〉. Assuming the pulse to propagate in a relativistically
underdense plasma ωp/〈γ〉 � ω , the refractive index can be simplified

η =

√
1−

ω2
p

〈γ〉ω2 ≈ 1− 1
2

ω2
p

〈γ〉ω2 , (2.51)

1
η
≈ 1+

1
2

ω2
p

〈γ〉ω2 . (2.52)

Small perturbations of the laser wavelength and the plasma density lead to

∂ η

∂ω
dω =

1
2

ω2
p

〈γ〉ω2 2
dω

ω
, (2.53)

∂ η

∂ne
dne =−

1
2

ω2
p

〈γ〉ω2
dne

ne
. (2.54)

With 〈γ〉 = 1+ a2
0/4 from Eq. (A.27)1 in the plane wave approximation, the refractive

index changes with varying a0 as

∂ η

∂a0
da0 =

1
2

ω2
p

〈γ〉ω2
1
2

a0

1+a2
0/4

da0. (2.55)

In the non-relativistic regime a0� 1 this can be further simplified

∂ η

∂a0
da0 ≈

1
2

ω2
p

〈γ〉ω2
1
2

a0 da0 =
1
2

ω2
p

〈γ〉ω2
1
4

da2
0. (2.56)

With these identities, the refractive index can be expanded via the total differential as [57]

η +dη = η +
∂ η

∂ne
dne +

∂ η

∂ω
dω +

∂ η

∂a0
da0

= 1− 1
2

ω2
p

ω2

(
1+

dne

ne
−2

dω

ω
−

da2
0

4

)
. (2.57)

1A general expression for 〈γ〉 in the case of a linearly polarized laser is given in [56, 72] and reads
〈γ〉=

√
1+a2/2
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These dependencies transfer to the group and phase velocity via Eq. (2.43) and Eq. (2.44)
accordingly

vgr +dvgr = c

1− 1
2

ω2
p

ω2

(
1+

dne

ne
−2

dω

ω
−

da2
0

4

) , (2.58)

vph +dvph = c

1+
1
2

ω2
p

ω2

(
1+

dne

ne
−2

dω

ω
−

da2
0

4

) , (2.59)

where we have used Eq. (2.52) in the latter case. Therefore, it is clear that the phase and
group velocity can be modulated by changing the density, laser frequency or intensity [73].
These effects were first predicted by theory in the 60s and 70s of the last century [74–76]
and shall be discussed in the following.

Density Dependent Focusing Effects

The spatial and temporal Gaussian shape of a focused laser pulse leads to inhomogeneities
in the constant background plasma density which directly affect the group and phase
velocity of the laser beam [77]. On the one hand, the intensity peaks on the axis, thus
the medium here ionizes first and the leading edge of the laser pulse experiences a higher
electron density on the axis. On the other hand, the ponderomotive force expels electrons
from the central regions of the beam generating a lower electron density on the axis. Both
effects influence the propagation of the laser as they either force the beam to diverge or
converge. These effects will be treated in the following in more detail.

Ionization Defocusing As the higher light intensity on the axis ionizes the medium first,
a higher electron density on the axis is induced. Therefore, the term dne/ne in Eq. (2.57)
modifying the refractive index increases towards the axis. Hence, this induced density
perturbation leads to a transverse non-vanishing gradient of the refractive index with a
higher phase velocity on the axis according to Eq. (2.59). The further away from the axis
the lower the phase velocity. Overall, these modulations of the radial phase velocity lead
to a defocusing of the driving laser pulse termed ionization defocusing [78]. However, in
the case of hydrogen gas ionized with high-intensity laser pulses, this effect is of minor
importance since the ionization threshold is orders of magnitudes below the ionization
potential of the laser pulse. Ionization defocusing therefore only plays a role at the leading
edge of the pulse’s pedestal.

22



2.5. Electromagnetic Waves in Plasma

Ponderomotive Self-focusing The ponderomotive force counteracts ionization defocus-
ing as it pushes electrons away from the center region of the laser beam. According to
Eq. (2.34), the ponderomotive potential is proportional to the laser intensity φPond ∝ I,
therefore ne decreases towards the axis and the term dne/ne in Eq. (2.59) becomes negative
[79].

For a Gaussian laser profile a2 = a2
0 exp(−2r2/r2

0) with a2� 1 this density perturbation
to the background plasma density n0 can be calculated [56]

ne(r) = n0−
4a2

0ε0mec2

e2r2
0

(
1− 2r2

r2
0

)
exp

(
−2r2

r2
0

)
. (2.60)

As a lower plasma density decreases the phase velocity, such variations in the plasma
background force the laser beam to converge.

Relativistic Self-focusing

The previously studied effect modifies the phase velocity by directly acting upon the
plasma density. In contrast, the last term in Eq. (2.59) addresses the plasma electrons by
considering their relativistic mass increase due to acceleration. In summary, the gradient
of a0 in the transverse direction leads to a reduced phase velocity on-axis causing the
so-called relativistic self-focusing. This effect only depends on the power P of the laser
pulse and overcompensates diffraction if the critical power Pcrit is surpassed [29, 72, 80]1

P > Pcrit := 8πε0c

(
mec2

e

)2
ω2

ω2
p
≈ 17.4

ω2

ω2
p
[GW]. (2.62)

In practical units, this expression may be rewritten as

Pcrit[TW]≈ 19.5λ [µm]−2ne[1018 cm−3]−1. (2.63)

1If both relativistic and ponderomotive self-focusing are taken into account, the threshold for guiding PL is
lowered to [80]

PL = 16.2
ω2

ω2
p
[GW]. (2.61)
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Due to diffraction, the waist of a Gaussian beam w(z) evolves according to

w(z)
w0

=

√
1+
(

z
zR

)2

, (2.64)

where w0 :=w(0) denotes the radius of the beam at the focal spot (z= 0). zR is the so-called
Rayleigh length defined by zR := πw2

0/λ . Taking into account relativistic self-focusing,
the beam waist evolves in first order according to [56]

w(z)2

w2
0

= 1+
(

1− P
Pcrit

)
z2

z2
R
. (2.65)

For P > Pcrit, higher-order corrections prevent the laser pulse to focus down to an infinitely
and therefore nonphysically small spot size [72].

Simulations show that guiding over several Rayleigh lengths with a stable spot size w0 is
reached, if [41]

w0 ≈ wmatch := 2
√

a0

kp
. (2.66)

wmatch is called matched beam spot size. In this case, self-focusing balances the natural
diffraction and the laser pulse can maintain its driving potential over several Rayleigh
lengths. Nevertheless, the very front of the laser pulse where the power is lower than Pcrit

will diffract which leads to head erosion of the laser pulse. This effect ultimately limits the
propagation distance of a laser pulse with matched beam spot size [81].

With Eq. (2.62) and Eq. (2.26) the power P may be expressed as

P = w2
0π

a2
0ω2

p

16π2c2 Pcrit. (2.67)

Hence, the above condition Eq. (2.66) for a stable guiding of the laser pulse can be
reformulated as [41] (

Pmatch

Pcrit

) 1
3

≈ a0

2
. (2.68)

For laser powers around Pcrit the pulse dynamics in plasmas is governed by the relativistic
mass increase of the electrons [56]. In contrast, for laser powers typical in LWFA ex-
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2.5. Electromagnetic Waves in Plasma

periments with P� Pcrit, density perturbations due to the ponderomotive force play the
dominant role [80].

In our experiments with ne = 3.0×1018 cm−3 the critical power is Pcrit ≈ 10.1TW. With
P≈ 75TW, the corresponding matched normalized vector potential is∼ 3.9 with a matched
spot size of wmatch ≈ 12µm. According to PIC simulations (cf. Figure 2.3) focusing effects
in the plasma increase a0 from ∼ 1.8 – its vacuum value – to ∼ 3 leading to a matched
power of ∼ 60TW, which is in good agreement with the measured pulse power at the
target in our experiments.

Temporal Pulse Compression

The above-mentioned focusing effects were based on transverse variations of the refractive
index. Of course, also longitudinal plasma inhomogeneities alter the pulse propagation. As
mentioned above, the front of the pulse already completely ionizes the gas medium, but the
ponderomotive force of the main peak pushes electrons forward and to the side. Therefore,
the back of the laser pulse travels in a plasma of lower density and increased γ , which both
increase η and hence also the group velocity according to Eq. (2.58). Therefore, the tail of
the pulse travels at a higher group velocity than the front part. The pulse gets longitudinally
compressed resulting in an effect called temporal pulse compression [82]. This has the
advantageous effect that the power of the driving laser pulse stays relatively constant even
though energy from the driver is transferred to the plasma electrons to form the wakefield
[83].

Let us consider two points of a laser pulse initially separated by cτ0. The pulse itself
travels through a plasma of length l having an unperturbed density ne. Due to laser-plasma
interactions, these two points have different group velocities vgr,1 and vgr,2. The temporal
separation of these two points after propagation in z direction over the distance ∆l changes
by

∆τ =
(
vgr,2− vgr,1

) ∆l
c2 = (η2−η1)

∆l
c

= ∆η
∆l
c
, (2.69)

where we made use of Eq. (2.43).

∆η of course is difficult to determine as it depends on the properties of the laser pulse which
influences the plasma density and the electron’s Lorentz factor γ according to Eq. (2.49).
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2. Laser-Matter-Interaction

But for ne� γncrit the refractive index can be approximated by Eq. (2.51)

η =

√
1− ne

γncrit
≈ 1− ne

2γncrit
. (2.70)

Hence,

∆η ≈ ηmax−ηmin ≈ 1−
(

1− ne

2ncrit

)
=

ne

2ncrit
, (2.71)

where we assumed a highly intense laser pulse a� 1 such that ηmax ≈ 1 for large γ and
ηmin ≈ 1−ne/(2ncrit).

Therefore, the temporal distance τ between the two points at the end of the plasma can be
estimated by [84]1

τ = τ0−∆τ ≈ τ0−
nel

2ncritc
. (2.72)

In our experiments with ne = 3.0×1018 cm−3, l = 2.5mm and ncrit = 1.7×1021 cm−3,
the temporal duration of the laser pulse reduces according to this estimation by ∆τ ≈ 7.4fs,
which is in good agreement with simulations (cf. Figure 2.3(d)).

Figure 2.3 shows a full PIC simulation of the three most relevant laser parameters and
their evolution in vacuum (dashed lines) and plasma (solid line). Figure 2.3(a) depicts
the corresponding profiles of the plasma density. Self-focusing (c) and temporal pulse
compression (d) indeed significantly take place as soon as the plasma density has reached
its plateau. This increases the intensity of the laser pulse, which in turn raises the laser’s
normal vector potential a0 (d).

All these above-mentioned effects arise from the coupling of the electron background to
the refractive index and thus also increase or decrease a0, which has significant influences
on the wakefield forming behind the laser driver as will be seen in the following section.

1Of course various effects like dispersion, the limited bandwidth of the pulse, etc. prevent τ from becoming
infinitely small.
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Figure 2.3.: Evolution of several laser parameters while propagating through a plasma.
A typical hydrogen gas density profile generated by a gas nozzle with plateau density
3.0×1018cm−3 is plotted in (a). The driving laser pulse (P = 50TW, τFWHM = 30fs) is
focused to a spot size of w = 20 µm at the beginning of the gas plateau (z = 800 µm),
indicated by the dashed gray vertical line. The interaction with the plasma increases the
laser intensity (b) due to transverse focusing (c) and temporal (longitudinal) compression
effects. The latter is plotted in (d) together with the longitudinal on-axis envelope of the
laser pulse. The solid lines in each plot are results from PIC simulations, whereas dashed
lines represent the evolution of these parameters assuming Gaussian beam propagation in
a vacuum.
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2.6. Laser Wakefield Acceleration

At the beginning of this chapter, we studied the interaction of a single electron with an
electromagnetic wave to derive its trajectory and established the ponderomotive force
exerted by a high-intensity laser pulse on charged particles. In the following sections,
we examine the collective effects of plasma electrons as a response to a general driving
potential. In pure LWFA this driving potential is composed of a solitary high-intensity
laser pulse. On the opposite side, for pure PWFA, a relativistic particle beam drives the
wakefield. We are interested in the intermediary regime between these two extreme cases.
Here the particle beam becomes non-negligible compared to the laser driver and beam
loading effects emerge. Consequently, both potentials are essential for our analysis and,
thus, none can be neglected in the following derivations.

To incorporate these beam loading effects, we analyze the response of the plasma to a
general driving force (be it a laser or particle beam or the combination of both) for 3D
linear and 1D nonlinear regimes. To do so, we first derive the general relativistic equation
of motion in plasmas. Note that the force on the electrons exerted by electromagnetic fields
can now be influenced by charge distributions and currents in the plasma – as opposed to
the equation of motion for a single electron [85].

2.6.1. General Equation of Motion in Plasmas

Taking into account that p2 = m2
ec2(γ2− 1) – which follows from the expression βγ =√

γ2−1 – and using the relation Eq. (A.13) together with Eq. (A.14), the equation of
motion given in Eq. (2.28),

dp
dt

=
d
dt

(γmev) =−e(E+v×B) , (2.73)

can be simplified to

∂p

∂ t
=−eE− ev×B− (v ·∇)p (2.74)

=−eE− ev×B− 1
2meγ

∇p2 + v× (∇×p) (2.75)

=−eE−mec2
∇γ−v× (eB−∇×p) . (2.76)
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2.6. Laser Wakefield Acceleration

With Eq. (2.6) this can further be expressed as [86]

∂p

∂ t
=−eE−mec2

∇γ−v×
(
∇× (eA−p)

)
. (2.77)

The last term of this equation vanishes, since replacing E =− ∂A

∂ t
−∇φ (cf. Eq. (2.7))

and taking the curl on both sides yields

∂

∂ t

(
∇× (p− eA)

)
= ∇×

(
v×

(
∇× (p− eA)

))
. (2.78)

Before the arrival of the driver, the electrons are unperturbed and at rest. With this initial
condition, ∇× (p− eA) = 0 for all time [87].

Therefore, the general equation of motion in plasmas becomes [59]

∂p

∂ t
=−eE−mec2

∇γ. (2.79)

In the following, we solve this equation. Replacing E – as above – with the corresponding
potentials yields

∂p

∂ t
= e

∂A

∂ t
+ e∇φ −mec2

∇γ. (2.80)

The first term on the right-hand side of this equation describes the laser field, the second
term the electrostatic force induced by the charge separation in the plasma, and the third
term is the plasma pressure.

Rearranging this equation leads to [79]

∂

∂ t
(p− eA) = ∇

(
eφ −mec2

γ

)
, (2.81)

which has a trivial solution, when the electrostatic force FE = e∇φ is balanced by the
ponderomotive force FPond,N =−mec2∇γ ,

e∇φ = mec2
∇γ (2.82)

⇒ p= eA, (2.83)

with the boundary condition, that the electrons are initially (i.e., prior to the passage of
the laser pulse) at rest. FPond,N is often called generalized nonlinear ponderomotive force
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2. Laser-Matter-Interaction

as it generalizes the ponderomotive force for a single electron in a laser field derived in
section 2.3 ([55, 56]).

From Eq. (2.83) follows with Eq. (2.23) [85, 86]

a=
eA
mec

=
p

mec
= γβ

⇒ a2 = (γβ )2 = γ
2−1

⇒ γ =
√

a2 +1

(2.84)

The ponderomotive force in a plasma is therefore given by

FPond,N =−mec2
∇γ =−mec2

∇

√
a2 +1. (2.85)

The corresponding ponderomotive potential follows directly

φPond,N = mec2 (γ−1) = mec2
(√

a2 +1−1
)
. (2.86)

Note, that these expressions, as well as the relation for γ derived in Eq. (2.84), differ from
the expressions given for a single electron in a plane wave (cf. section 2.2 and section 2.3)
as we are dealing here with effects emerging from collective electron motion1.

2.6.2. Wakefield Generation

High intensity laser pulses or relativistic particle beams excite collective electron motion
when propagating through a plasma. This response of the plasma manifested by a plasma
wave is caused by the ponderomotive and electrostatic potential of the driver. The derivation
of the equations describing these plasma waves will be given in the following, starting out
with the continuity equation, Gauss’s law and the general equation of motion which have
already been introduced in previous sections above (Eq. (2.5), Eq. (2.1) and Eq. (2.79))

• Continuity Equation:
∂ ρ

∂ t
+∇j = 0

• Gauss’s law: ∇ ·E =
ρ

ε0
,

• Equation of Motion in Plasmas:
∂p

∂ t
=−eE−mec2∇γ.

1The ponderomotive force treated in this context has its origin in the collective motion of charged particles,
whereas the ponderomotive force derived in section 2.3 originates from the motion of a single particle.
Therefore, the expressions for the ponderomotive force and γ differ. For more details see [62, 85].

30



2.6. Laser Wakefield Acceleration

In the following, the electrons are treated as a fluid with zero temperature and with the
density and velocity distribution ne(r,t) and v(r,t), respectively. The positively charged
ion background with density ni is assumed to be immobile (vi = 0) which is justified due
to the much higher mass of the ions (cf. section 2.2). In the following, we denote the
unperturbed electron plasma density by n0. In the case of hydrogen gas, we therefore have
ni = n0. The density of the plasma wave ne can hence be expressed by ne = n0 +δn. The
laser is described by its normalized intensity a2 and the driving, non-evolving electron
beam with speed vb by its charge density nb. The following derivation is based on the
works of [54–56, 59, 79, 86].

Linear Wakefields

In the 3D linear non-relativistic regime, we assume a weak laser driver with a0� 1 in
combination with a particle beam as an additional driver. Moreover, the particle beam
density and perturbations to the plasma density are assumed to be small, i.e., nb/n0� 1
and δn/n0� 1. The fundamental equations above can then be simplified by linearization,
as carried out in the following [40].

Using the relations ρ =−e(ne +nb−n0) and j =−e(nev+nivi +nbvb), the continuity
equation can be rewritten. For that, we harness the assumptions of an immobile ion
background to deduce the linearized form of the continuity equation by omitting small
higher-order contributions

∂ δn
∂ t

+n0∇ ·v = 0. (2.87)

Gauss’s law can be transformed accordingly

∇ ·E =− e
ε0

(nb +δn) . (2.88)

The ponderomotive force given in Eq. (2.85) can also be simplified considering that
Eq. (2.84) transforms as γ =

√
a2 +1≈ 1 for a� 1

FPond,N =−mec2
∇γ =−mec2

∇

√
a2 +1≈−mec2

∇
a2

2
, (2.89)

where we have used Eq. (2.84) and ∇γ = (∇a2)/(2γ)≈ ∇a2/2.
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The ponderomotive potential simplifies as well

φPond,N = mec2 (γ−1) = mec2
(√

a2 +1−1
)
≈ mec2 a2

2
. (2.90)

Inserting Eq. (2.84) into the equation of motion, Eq. (2.79), together with γ ≈ 1 in the
linear regime, we get

∂v

∂ t
=−eE

me
− c2

∇
a2

2
. (2.91)

The wave equation describing a plasma density perturbation induced by an external driving
potential directly follows from equations Eq. (2.87), Eq. (2.88), and Eq. (2.91).

To start off, we take the time derivative of Eq. (2.87), which yields

∂ 2

∂ t2
δn
n0

=− ∂

∂ t
(∇ ·v) . (2.92)

The divergence on both sides of Eq. (2.91) leads to

∇
∂v

∂ t
=− e

me
∇ ·E− c2

∇
2 a2

2
. (2.93)

Plugging both relations into Eq. (2.88), we get

− e2n0

meε0

nb +δn
n0

=
e

me
∇E =−∇

∂v

∂ t
− c2

∇
2 a2

2
=

∂ 2

∂ t2
δn
n0
− c2

∇
2 a2

2
. (2.94)

Rearranging and inserting the plasma frequency, Eq. (2.38), leads to the wave equation for
linear wakefields [79] (

∂ 2

∂ t2 +ω
2
p

)
δn
n0

= c2
∇

2 a2

2
−ω

2
p

nb

n0
. (2.95)

With Eq. (2.90), the right-hand side can be further simplified to(
∂ 2

∂ t2 +ω
2
p

)
δn
n0

=
1

me
∆φPond,N−

1
me

e2nb

ε0
. (2.96)
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The very last term on the right-hand side is related to the electric potential of the particle
beam φb via

∆φb =
e
ε0

nb. (2.97)

Hence, with q =−e, the wave equation can be rewritten(
∂ 2

∂ t2 +ω
2
p

)
δn
n0

=
1

me
∆
(
φPond,N +qφb

)
, (2.98)

which we recognize as an undamped driven harmonic oscillator [83]. The driving potential
on the right-hand side is a linear superposition of the ponderomotive potential generated
by the laser pulse and the electrostatic potential provoked by the particle beam. Their
interaction with the plasma particles displaces electrons which then start to oscillate.

In the co-moving frame, with ζ = z− ct ⇒ ∂/∂ t = −c∂/∂ζ , ∂/∂ z = ∂/∂ζ , this wave
equation can be solved analytically assuming that the drive beam is non-evolving, which
means it has no direct time dependence (so-called quasi-static approximation) and therefore
the partial time derivatives vanish. The corresponding electric field can be calculated from
Eq. (2.88).

Solutions to Eq. (2.95) in the case of a purely laser-driven wakefield (nb = 0) with arbitrary
lengths of the driver are difficult to find and were subject to theoretical studies for many
years [28, 81, 88–90]. Nevertheless, with a driver of transverse Gaussian and longitudinal
sine-squared-like normalized intensity profile,

a(r,z)2 = a2
0 exp

(
− 2r2

w(z)2

)
sin2 (

πζ/L
)

for 0 < ζ < L, (2.99)

and 0 elsewhere, an exact solution was given by Sprangle et al. [91]. Their expression
indicates that the wake is driven resonantly for laser pulse lengths L≈ λp, i.e.,

LFWHM ≈ λp/2, (2.100)

and that the radial extent of the wake is on the order of the laser spot size w0. However, the
exact pulse length to resonantly drive a wake in the linear case depends on the exact shape
of the driving pulse [56].

Analogous to the definition of the normalized field of electromagnetic waves with frequency
ω given by Eq. (2.23) a= E/Ẽ0 with Ẽ0 = (mecω)/e, we introduce the normalized electric
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field strength of the wakefield Ez/E0 with E0 = (mecωp)/e. E0 will play an important role
in the following subsection 2.6.3.

For a linearly polarized laser pulse of resonant length, the normalized axial electric field
Ez/E0 and normalized density perturbation δn/n0 of the wake behind the driver are given
by [79]

Ez

E0
=−π

4
a2

0
2

exp

(
− 2r2

w(z)2

)
cos
(
kpζ
)
, (2.101)

δn
n0

=−π

4
a2

0
2

1+
8

k2
pw(z)2

(
1− 2r2

w(z)2

)exp

(
− 2r2

w(z)2

)
sin
(
kpζ
)
. (2.102)

By the Panofsky-Wenzel theorem, the radial electric field can be calculated from Ez

[79] which leads to Er ∝ r exp(−2r2/w(z)2)sin
(
kpζ
)
. Hence, in the linear regime, the

accelerating electric fields as well as the density perturbation behind the driver follow a
sinusoidal shape and are phase-shifted with respect to each other by π/2. The electrostatic
fields and density perturbation are periodic with wavelength λp. Due to the changing sign
in the trigonometric functions, the structure of the wake provides regions with decelerating
and accelerating forces, and the radial electric fields display focusing and defocusing
effects on the accelerated particle bunch induced by the r dependence [56]. Due to their
respective phase difference, an off-axis electron will simultaneously experience axial
acceleration and radial focusing forces only for a region of

∣∣∆ζ
∣∣= π/(2kp) (which differs

from the non-linear case as we will see later) [92]. It is this phase of the wake that is
favorable for electron injection and acceleration.

Typical LWFAs are operated in the nonlinear regime, where a0 > 1. Therefore, the above
assumptions cannot be maintained and the theoretical description of wakefield acceleration
has to be extended to the much more complicated case of nonlinear wakefields, where
only a one-dimensional theoretical description exists. The study of the general three-
dimensional non-linear case requires numeric methods like PIC simulations (cf. chapter 3).
Nevertheless, the one-dimensional theory already covers a wide range of nonlinear effects
and scaling laws which may directly be transferred to the general 3D case. Justified by this
fact, the fully relativistic one-dimensional description of plasma wakefields shall briefly be
treated.
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Nonlinear Wakefields

When entering the relativistic regime a0 > 1, the above assumptions of small density pertur-
bations and γ ≈ 1 cannot be kept up. The response of the plasma becomes highly nonlinear,
which makes the linearization of the underlying equations impossible. Nevertheless, the
way of proceeding stays the same. Using the Coulomb gauge ∇ ·A= 0 and the relation for
the plasma frequency given in Eq. (2.38), Gauss’s law can be reformulated to the Poisson
equation

∇
2
ϕ = k2

p

(
ne

n0
+

nb

n0
−1
)
, (2.103)

where

ϕ := φ/(mec2) (2.104)

is the normalized electric potential.

As in the linear case, the equation of motion and continuity equation are used to derive the
one-dimensional general wakefield equation in the co-moving frame in the quasi-static
approximation [54, 79, 93]1

1
k2

p

∂ 2ϕ

∂ζ 2 =±nb

n0
+ γ

2
p

βp

(
1− 1+a2/2

γ2
p (1+ϕ)2

)− 1
2

−1

 . (2.105)

Here we have used the relativistic factor for the plasma wave γp = (1− β 2
p )
−1/2 and

βp = vp/c, with vp being the phase velocity of the plasma wave. The + sign covers the case
of an electron driver, the − sign a positron driver. Note, that Eq. (2.105) breaks down for

ϕ =
√

1+a2/2/γp−1. The corresponding electric field EB/E0 =
√

2
√

1+a2/2(γp−1)
is a generalization of the cold relativistic wave breaking limit including effects of a laser
field [93], as will be discussed later in subsection 2.6.3.

1In mathematical expressions for the wakefield and related equations, typically a circularly polarized laser
pulse is assumed. However, as we are dealing with a linearly polarized driver in our experiments, all
equations in this chapter assume linear polarization. They can be translated to circularly polarized light
by substituting a2/2 with a2.
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The normalized axial electric field behind the driver is given by1

Ez

E0
=− 1

E0

∂ φ

∂ z
=− e

mecωp

mec2

e
∂ ϕ

∂ζ
=− c

ωp

∂ ϕ

∂ζ
=− 1

kp

∂ ϕ

∂ζ
. (2.106)

In the ultra-relativistic limit γp� 1 we can expand both the innermost expression

(
1− 1+a2/2

γ2
p (1+ϕ)2

)− 1
2

≈ 1+
1+a2/2
(1+ϕ)2

1
2γ2

p
(2.107)

and

βp =
√

1− γ
−2
p ≈ 1− 1

2γ2
p

(2.108)

to simplify Eq. (2.105), which directly leads to [79]

1
k2

p

∂ 2ϕ

∂ζ 2 =±nb

n0
+

1+a2/2
2(1+ϕ)2 −

1
2
. (2.109)

Eq. (2.105) and Eq. (2.109) imply that the plasma wavelength increases with a, i.e.,
λp,n > λp [79], where λp,n stands for the plasma wavelength in the nonlinear regime. This
is due to the relativistic mass increase of the accelerated background plasma electrons
which leads to a reduced plasma frequency according to Eq. (2.48).

In the case of a linearly polarized laser pulse of square axial profile with length L, the
normalized axial electric field given in Eq. (2.106) is maximized when [56]

L≈ λp,n/2. (2.110)

Assuming further the group velocity of the driver to approach the speed of light, Eq. (2.109)
can be solved analytically. Under these conditions, the maximum normalized wakefield
quantities under the constraint Ez < EB are then given by [89, 94]

Ez

E0

∣∣∣∣
max

=
a2

0/2√
1+a2

0/2
, (2.111)

ϕmax = a2
0/2. (2.112)

1Mathematical expressions for the plasma fluid quantities can be found in [56].
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Figure 2.4.: Normalized wakefield quantities derived from numerical solutions to the
one-dimensional general wakefield equation Eq. (2.105) for different normalized vector
potentials of the driving laser pulse. A possibly additional particle driver is neglected, i.e.,
nb = 0. ζ0 of the driving Gaussian laser pulse has been set to 0.4λp, which corresponds to
a FWHM (intensity) time duration of∼ 26 fs at typical plasma densities of 3.0×1018cm−3.
Three different regimes are plotted: the linear regime with a0� 1 (left), the relativistic
regime a0 > 1 (middle) and highly relativistic regime with a0� 1 (right). Note the different
scales on the vertical axes.

In the linear limit, |ϕ| � 1, it is (1+ϕ)−2 ≈ 1−2ϕ , which reverts to the one-dimensional
form of the linear wakefield equation given in Eq. (2.95) [79].

The general wakefield equation Eq. (2.105) solved numerically for a Gaussian laser pulse
as the sole driver (i.e., nb = 0) with a(ζ ) = a0 exp

(
−ζ 2/ζ 2

0

)
is plotted in Figure 2.4 for

different a0. ζ0 stands for the length of the laser pulse.

The time duration of its FWHM intensity is given by
√

2ln2ζ0/c. The normalized electric
field Ez/E0 is obtained via Eq. (2.106) and the normalized charge density δn/n0 is given by
Eq. (2.103). Moreover, the electric field having a sinusoidal shape in the linear regime takes
on a sawtooth-like profile in the relativistic regime with almost constant field gradients
between its maxima. In contrast to the sinusoidal oscillation in the linear regime, the
plasma wave expressed by the electron density adopts sharper spikes the greater a0. The
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2. Laser-Matter-Interaction

above-mentioned elongation of the plasma wavelength λp is clearly visible and can be
approximated by [56]

λp,n = λp

1+ 3
16

(
Emax
E0

)2
, Emax

E0
� 1,

2
π

(
Emax
E0

+ E0
Emax

)
, Emax

E0
� 1,

(2.113)

where Emax/E0 is the normalized peak electric field strength of the plasma wave which is
given by Eq. (2.111)

Emax

E0
≈


a2

0
2 , a0� 1,
a0√

2
, a0� 1,

(2.114)

for a linear polarized laser pulse with a square axial profile and optimal length according
to Eq. (2.110). In this case, the nonlinear plasma wavelength λp,n then scales as

λp,n(a0)≈ λp

1+ 3
64a4

0, a0� 1,
√

2a0
π

, a0� 1.
(2.115)

In the nonlinear regime Emax/E0� 1, the optimal length L to resonantly drive a wakefield
for a square laser pulse according to Eq. (2.110) is therefore given by [94]

L !
=

λp,n

2
≈ a0√

2π
λp. (2.116)

For other axial profiles of the driving laser pulse, this optimal length changes and even
becomes independent of a0 in the case of a Gaussian laser pulse [56, 95].

Note that these scaling laws only hold true in the one-dimensional case. 3D PIC simulations
not only suggest an additional dependence on the laser pulse’s width and length but also
disagree with this scaling law for a0� 1 [96]. Nevertheless, the dependence of λp,n on
the normalized vector potential has strong implications on the appearance of the three-
dimensional nonlinear plasma wave in LWFA experiments. Since the intensity of the
laser pulse typically peaks on the axis and has a (super-)Gaussian radial profile, the
plasma wavelength is maximum on the axis and decreases farther away from the axis.
This dependence of λp,n on the radius causes the plasma wave to become curved like a
horseshoe (cf. Figure 4.9(b)).
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2.6. Laser Wakefield Acceleration

2.6.3. Wave Breaking

Naturally, the question arises about the maximum field Ez the plasma wave can sustain
before wave breaking occurs. This happens when the velocity of the electrons forming
the wake exceeds the phase velocity of the wake itself [59]. In the three-dimensional
linear case, the electric field on axis follows a cosine-like shape Ez = Emax cos(kp(z− ct))
according to Eq. (2.101). Emax can be estimated via Gauss’s law Eq. (2.88) [56, 97]

∂ Ez

∂ z
=− e

ε0
δn =−Emaxkp sin(kp(z− ct))

⇒ Emax =
ωpmec

e
δn
n0

∣∣∣∣
max

.

(2.117)

Assuming a maximum density perturbation δn/n0 = 1 we obtain the so-called cold non-
relativistic wave breaking field

E0 =
ωpmec

e
=

√
c2n0me

ε0
≈ 96

√
n0[1018 cm−3]GVm−1, (2.118)

which is exactly the factor we used to apply to normalize the electric field strength in
wakefields (cf. section 2.6.2).

Based on Dawson [97], an illustrative picture of wave breaking can be derived. By Gauss’s
law and from the electric field Ez above follows directly the electron displacement from
the equilibrium position d(z) in one dimension

d(z) = dmax cos
(
kp(z− ct)

)
, (2.119)

with the maximum deflection dmax = Emaxε0/(nee). If the electric field reaches the wave
breaking limit Emax = E0, the maximum displacement becomes

dmax =
ωpmecε0

e2ne
=

c
ωp

= k−1
p . (2.120)

Therefore, in the wave breaking limit, the displacement grows so large, that it becomes
comparable to the plasma wavelength. The electrons’ oscillation amplitude becomes larger
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than k−1
p and the wave breaks longitudinally. Hence, for Emax > E0, the linear description

of wakefields breaks down 12.

Comparing these fields needed to achieve wave breaking with the ones derived in sec-
tion 2.6.2, it becomes obvious that wave breaking cannot be achieved in the linear regime,
where a0� 1 since according to Eq. (2.101), the fields are much smaller than the wave
breaking limit ∣∣∣∣Ez,max

E0

∣∣∣∣= π

8
a2

0� 1. (2.121)

The above estimation for the wave breaking field only holds true in the non-relativistic
linear case. Using the one-dimensional nonlinear cold fluid equations, the maximum
attainable field amplitude EWB, the so-called cold relativistic wave breaking field can be
derived [59, 98]

EWB = E0

√
2(γp−1), (2.122)

where γp = (1− v2
p/c2)−1/2 denotes the Lorentz factor of the phase velocity vp of the

plasma wave. Since the latter is approximately given by the group velocity of the laser
pulse, it is (applying Eq. (2.43) and Eq. (2.47))

γp ≈
√

ncrit

ne
=

ω

ωp
� 1 (2.123)

and therefore

EWB ≈ E0

√√√√2

(
ω

ωp
−1

)
≈ E0

√
2

ω

ωp
. (2.124)

Including effects from the driving laser field, the cold relativistic wave breaking field
changes to [93]

EB = E0

√
2
√

1+a2/2(γp−1), (2.125)

1This closely corresponds to the acceleration of particles in electromagnetic fields. Here, the classical
description breaks down for a = E/Ẽ0 > 1 with Ẽ0 = (mecω)/e. In the case of wakefields, the linear
description breaks down for Ez/E0 > 1 with E0 = (mecωp)/e.

2See Table 2.2 for specific experimental values.
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2.6. Laser Wakefield Acceleration

as we have seen in the discussion of Eq. (2.105). EB converges to EWB for negligible laser
intensity a→ 0.

Compared to the non-relativistic case, the wave breaking field EWB is much higher1. To
reach this threshold in the relativistic regime, either the laser intensity is significantly
increased or measures are taken to force wave breaking. Both methods are described in
detail in subsection 2.6.6.

Technically, the above-mentioned limits only hold true in the case of low-temperature
plasma waves. Thermal effects not only change this maximum attainable amplitude [56,
59, 99–101] but also make a concise definition of wave breaking problematic [102] since
the electron distribution is now spread around its mean velocity. Expressions for the warm
relativistic wave breaking limit in the case of relativistic drivers (γp ∼ 10−100, typical
for laser-driven plasma waves) can be found in [103] and in the case of ultra-relativistic
drivers (typical for particle-driven plasma waves) in [101].

In the multidimensional case, the transverse plasma oscillations couple to the longitudinal
ones which makes a general treatment of wave breaking in the three-dimensional relativistic
regime much more complicated [104] and gives rise to additional effects like transverse
wave breaking [105].

2.6.4. Blow-out and Bubble Regime

In the previous sections, we have investigated plasma wakefields in the 1D regime as
well as in the 3D linear regime under the constraint of a non-evolving drive beam. These
models can be treated analytically. Nevertheless, a fully relativistic analytic theory of
wakefields in three dimensions does not exist and therefore a realistic description depends
on numerical simulations. Here, the underlying partial differential equations that couple
charged particles to the electromagnetic fields are usually solved in discrete time steps while
the electromagnetic fields are evaluated on a computational grid. This kind of numerical
treatment is called particle-in-cell (PIC) simulation and is further detailed in chapter 3.
The vast number of necessary particles to initialize and the required resolutions in time
and space to accurately model the plasma and light wave make a numerical treatment
computationally extremely expensive (cf. Figure 2.5). This is why the 3D nonlinear regime
was not studied until 1991 by Rosenzweig et al. [106] for PWFA and more than a decade
later for LWFA by Pukhov & Meyer-ter-Vehn [31]. These so-called blow-out or bubble
regimes are characterized by a complete expulsion of plasma electrons behind the driver
triggered by its ponderomotive potential. A cavity void of electrons forms in the trail of

1See Table 2.2 in section 2.8
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2. Laser-Matter-Interaction

Figure 2.5.: Three-dimensional rendering of a PIC simulation showing a wakefield with
a0 = 2.6 and n0 = 3.0×1018cm−3. The relative electron density ne/n0 is plotted as false
color at the bottom, whereas the longitudinal electric field is portrayed by the three-
dimensional surface plot. For greater clarity, the driving laser pulse with its peak intensity
located at ζ = 0 is not shown.
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Figure 2.6.: Two-dimensional plots of PIC simulations showing nonlinear wakefields and
their properties. In (a) the electron density behind a relativistic laser driver is shown.
The electric fields of the driver as well as the longitudinal accelerating field on the axis
forming behind the driver (green line) are plotted. In comparison, (b) shows the fully
broken blow-out regime with a highly relativistic driver (P≈ 1000TW). The accelerating
and focusing fields inside this bubble are plotted in (c) and (d). The simulation from (b-d)
is the same as in Figure 2.8.

the driver surrounded by a thin sheath of expelled electrons (see Figure 2.6). The plasma
electrons are pulled back as soon as the driver has passed and oscillate around their initial
position with their plasma frequency forming the elongated wakefield structure behind
the driver. Depending on the strength of the laser driver in the fully relativistic case, one
distinguishes between the fully broken "bubble regime" (a0 & 4) and the partially broken
"blow-out regime" (2 . a0 . 4) [41]. In the latter, blow-out still occurs and the shape of
the leading cavity slightly deviates from a sphere [41]. Nevertheless, in contrast to the
bubble regime, the collective motion of the electrons forming the wake is still coherent
enough to form a stable structure behind the driver. A train of plasma buckets follows the
leading cavity (cf. Figure 2.7). In the fully broken bubble regime, however, the potential of
the driver is large enough (a0 & 4) to induce nonlinearities that lead to electron trajectory
crossings [31, 106]. The electron motion becomes nonlaminar which smears out and finally
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Figure 2.7.: PIC simulation of a LWFA in the partially broken regime with a0 ≈ 3.3 and
n0 = 3.0×1018cm−3. The contour lines of the laser’s electric field as well as its directional
derivative are also plotted. The wakefield behind the driver forms a chain of bubbles. Some
electron trajectories color-coded by their initial radial distance from the laser propagation
axis are plotted to illustrate how this structure is created. Their respective line thickness
depicts the corresponding relative charge ("weight") of the macroparticle.
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Figure 2.8.: PIC simulation of a LWFA in the fully broken bubble regime with a0 ≈ 8.0
and n0 = 3.0×1018cm−3. The contour lines of the laser’s electric field as well as its
directional derivative are also plotted. The plasma density takes over a circular shape
("bubble") behind the laser driver with radius R. The transverse extent of this cavity is
denoted by rb(ζ ). For better clarity, only the laser gradient is shown here.
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2.6. Laser Wakefield Acceleration

erases the typical wake structure behind the leading cavity [97, 107]. Effectively, behind
the driver, a solitary blow-out region, the so-called "bubble", is formed (cf. Figure 2.8).
Analogously, for PWFA the nonlinear regime occurs for nb/n0 > 1, kbσz < 1 and kbσr < 1,
where σz and σr denote the axial and radial (RMS) bunch lengths.

In both the blow-out and bubble regime, the shape of the bubble can be approximated by
[108, 109]

rb
d2rb

dξ 2 +2
(

drb

dξ

)2

+1≈ 4λc(ξ )

r2
b

, (2.126)

where

ξ := ζ +λp,n/2 (2.127)

is defined such that the center of the bubble is approximately located at ξ = 0 (whereas
ζ = 0, as defined above, is the position of the laser’s peak intensity in the co-moving
frame). rb depends on ξ and stands for the local transverse radius of the blow-out cavity.
The bubble propagates in the co-moving frame in ξ direction. Accelerated charges inside
the bubble act on the electrons forming the sheath by their Coulomb potential. Hence, a
loaded cavity has a different shape. This effect is taken into account by the right-hand side
of this equation. λc, given in normalized units, denotes the charge per unit length of the
load, i.e. the electron beam [42].

In the case of an unloaded wake (meaning no accelerated electron beam inside the bubble
or no particle driver) Eq. (2.126) then simplifies to

rb
d2rb

dξ 2 +2
(

drb

dξ

)2

+1≈ 0. (2.128)

Considering the equation for a circle (with radius 1 and ξ ,rb(ξ ) being the x,y components),
which can be rewritten as

0 = r2
b +ξ

2−1 = rb
d2rb

dξ 2 +

(
drb

dξ

)2

+1, (2.129)

we recognize Eq. (2.128) as a circle plus an additional (drb/dξ )2 term which leads to a
stronger bending of the radius at the rear part of the bubble than compared to a circle.

In the unloaded case, the radius of the blowout cavity R which is the maximum bubble
radius is approximately given by the matched spot size of the driving laser pulse. It depends
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2. Laser-Matter-Interaction

on the plasma wavelength and the normalized laser vector potential (which changes during
propagation through the plasma, cf. Figure 2.3). With Eq. (2.66) we may estimate [41]1

R≈ wmatch ≈ 2
√

a0/kp = λp
√

a0/π. (2.130)

The longitudinal on-axis accelerating fields inside the bubble are given by [109]

Ez(ξ ) =−
ene

2ε0
rb

drb

dξ
. (2.131)

As
∣∣drb/dξ

∣∣ increases rapidly at the very end of the cavity, the accelerating field Ez shows
a sharp spike there, whereas in the middle of the bubble, where rb ≈ R and

∣∣drb/dξ
∣∣� 1,

the field is almost linear (see Figure 2.6(c)) and may be approximated by [56, 110]

Ez

E0
≈ ene

2ε0E0
ξ = kp

ξ

2
, (2.132)

since with Eq. (2.128) follows

dEz

dξ
=−ene

2ε0

(drb

dξ

)2

+ rb

(
d2rb

dξ 2

)=
ene

2ε0

[
1+
(

drb

dξ

)2
]
≈ ene

2ε0
. (2.133)

This approximation for the on-axis accelerating field can be extrapolated and reaches its
maximum at ξ = R. Therefore, with Eq. (2.130) [56]

Ez,max = E0
kpR
2

= E0
√

a0. (2.134)

The radial electric field as well as the magnetic field can be derived accordingly [108, 111]

Er

E0
≈ kp

r
4
, (2.135)

Bθ

E0
≈ kp

r
4
. (2.136)

Note that in this regime, the region where both the longitudinal fields are accelerating
and the radial fields are focusing extends over half the bubble radius. Hence, the phase

1Note that the expression for the nonlinear plasma wavelength in three dimensions given here differs from
the one-dimensional expression by a factor of

√
a0/2 since in the latter theory it is 2R≈ λp,n = λpa0

√
2/π

according to Eq. (2.115).
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favorable for particle acceleration (Ez(ξ )< 0, Er(ξ )> 0) extends over π as opposed to
linear wakefields (cf. section 2.6.2).

According to Eq. (2.135) and Eq. (2.136), the electromagnetic fields inside the cavity
are linear and aligned radially. Thus, the transverse field components effectively focus
the accelerated particles (see Figure 2.6(d)). Since the forces are linear, the normalized
emittance of an accelerated electron bunch remains unchanged which makes this regime
ideal for LWFA [56].

Many experiments, however, operate in an intermediary regime between linear perturbation
and bubble regime, which currently lacks a consistent theory. In this case, we are obliged
to completely rely on PIC simulations. The majority of electron data presented in this
thesis stem from LWFAs driven in the transition range between blowout and bubble regime.
Taking self-focusing into account, the normalized vector potential a0 of the driving laser
pulse delivered by the ATLAS-300 system stays between ∼ 2 and ∼ 7 when propagating
through the plasma according to PIC simulations (e.g., Figure 2.3(b)). Details on such PIC
simulations that enable the study of this intermediary regime are given in chapter 3.

As discussed above, the wakefield structure examined in this chapter and its inherent
accelerating fields can be utilized to accelerate electrons. To do so, the charged particles
must be injected into this accelerating structure and extracted again before deceleration
due to dephasing happens. The following sections are dedicated to these processes.

2.6.5. Trapping and Acceleration

Trapping of injected particles naively occurs when the plasma electrons’ velocities even-
tually match or surpass the phase velocity of the plasma wave. The latter is given by the
group velocity of the driving laser pulse (for non-evolving wake drivers). Hence, the energy
injected electrons need to reach to be trapped can be estimated by requiring γ > γthres :≈ γp.
According to Eq. (2.123), this threshold may be calculated as

γthres ≈
√

ncrit

ne
=

ω

ωp
. (2.137)

In the following, we will examine the phase space of plasma electrons exposed to an
external driving potential. From that, we gain a more profound insight into the trapping
and acceleration dynamics. Furthermore, a brief outline of how to derive a thorough
mathematical expression for γthres will be given.
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As soon as the electrons are trapped within the potential of the wakefield, they are ac-
celerated by the longitudinal electric fields of this structure. The electron dynamics can
be illustrated by examining their trajectories in phase space. To do so, we consider the
corresponding Hamiltonian in the one-dimensional theory in the co-moving frame, average
over the fast laser oscillations, use the normalized quantities introduced in section 2.6 and
assume the initial transverse momentum of the electron to be small (p⊥� 1) [112]

h(ζ ,p‖) =
√

1+ p2
‖+a(ζ )2/2− (ϕ(ζ )+βp p‖) = h0, (2.138)

where p‖ is the longitudinal momentum of the electron normalized by mec. h as the sum
of potential (terms inside the bracket) and kinetic energy (square root) in the co-moving
frame does not explicitly depend on time and therefore, energy is conserved. Hence, the
trajectory is specified by its initial energy h0. Eq. (2.138) describes closed (which we call
trapped) and open (untrapped) orbits in phase space determined by h0 and can be solved
analytically [93]

p‖ = βpγ
2
p (h0 +ϕ)± γp

√
γ2

p (h0 +ϕ)2−1−a2/2. (2.139)

A color-coded graphical depiction of the Hamiltonian is plotted in Figure 2.9 for the
longitudinal phase space. Some contour lines representing individual particle trajectories
of equal energies are highlighted (bold lines) and differentiated by their initial energy
(color-coded). The directional movement on these trajectories is indicated by arrows.
Trajectories with lower initial energy form closed orbits (d). Electrons following these
trajectories in the direction of the arrows are trapped in the wake’s potential and periodically
gain and lose kinetic energy. The separatrix (a) with initial energy hs separates these orbits
from open (untrapped) trajectories. If the initial energy of the electron is too high or low, it
simply overtakes the wake (b) or moves backward in the co-moving frame (f) following
the wave’s motion. These electrons and their periodic oscillation form the plasma wave
itself (cf. Figure 2.7). As the first bucket of the wake is influenced by the laser potential,
the separatrix is modified and gives rise to so-called runaway electrons (c) with energies
below hs. They gain enough kinetic energy to finally overtake the driving laser field. These
runaway electrons are separated by the runaway separatrix (e) from the electrons which
are trapped in the first bucket or reflected by the driver’s potential [54].

The separatrix hs is characterized as the solution to Eq. (2.138) with maximum initial
energy for closed orbits. In this special case, the closed trajectories intersect at one singular
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Figure 2.9.: Longitudinal phase space of the wakefield structure. The upper part of the
plot shows the normalized wakefield quantities (nwq.) similar to Figure 2.4 with a0 = 2
and ζFWHM ≈ 0.33λp. The lower part shows the color-coded Hamiltonian with γp ≈ 13.2
depending on the normalized position in the co-moving frame and the longitudinal momen-
tum p‖. Exemplary trajectories (bold) in this phase space with different initial energies are
highlighted in red and black. The highlighted orbits are either closed (d) or opened (b).
The trajectory separating these phase space areas is the so-called separatrix (red dashed
line labeled (a)). Red lines separate regions with different particle behavior. Solid lines
represent trajectories outside the separatrix, dashed lines mark trajectories between the
separatrix and runaway separatrix (e). Dotted lines stand for closed orbits resp. reflected
particles. Details and characteristics of exemplary orbits or trajectories are given in the
main text.
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point ζi. Therefore, for this special orbit, the square root in Eq. (2.139) has to vanish and a
condition for hs can be derived with ϕmin := ϕ(ζi)

γ
2
p (hs +ϕmin)

2−1−a2/2 !
= 0⇒ hs =

√
1+a2/2

γp
−ϕmin. (2.140)

With this expression, p‖ can be minimized under the condition h = hs to find the minimum
momentum p‖,min required to trap electrons [93]. This trapping threshold depends on the
potential ϕ respectively on the corresponding longitudinal fields E/E0. For a field strength
E corresponding to the generalized cold relativistic wave breaking field (including laser

effects) (cf. section 2.6.2) E/E0 =EB/E0 =
√

2
√

1+a2/2(γp−1), the threshold becomes
p‖,min = γp [93, 113], which confirms our naive picture above leading to Eq. (2.137).

From Figure 2.9 it also becomes clear, that of all possible trajectories, trapped particles
gain the highest kinetic energy, until they reach the decelerating phase of the wake where
their kinetic energy gets lost again. For a LWFA to work most efficiently, the acceleration
process of trapped electrons therefore needs to be terminated when the particles reach
ζ ≈−λp,n/2.

In the following sections, several mechanisms to inject electrons into the accelerating
phase of the wakefield structure are discussed.

2.6.6. Injection Mechanisms

In order to accelerate charged particles in a plasma wakefield, they must be brought into
the accelerating phase of the wakefield (i.e. −λp,n/2 < ξ < 0, since here Ez < 0 according
to Eq. (2.132), respectively −λp,n < ζ <−λp,n/2, cf. Eq. (2.127)), where they follow the
trajectories described in the previous section. This can be achieved either passively by
driving the wake into the highly relativistic regime, where wave breaking occurs, or by
controlled injection. The first technique is known as self-injection mechanism and happens
more or less automatically as soon as the driver is strong enough owing to the laser pulse
evolution in plasma (cf. subsection 2.5.2). The latter, however, has experienced growing
attention in the last two decades. These advanced techniques generally aim at a localized
injection. Here all injected particles are accelerated over the same distance which ideally
leads to a smaller final energetic bandwidth (cf. chapter 5).
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Figure 2.10.: Depiction of longitudinal and transverse self-injection. Transverse self-
injection (a): Electrons located approximately one laser waist away from the axis cir-
cumvent the laser pulse and travel to the back of the bubble, where they are injected.
Longitudinal injection (b): Electrons close the laser propagation axis pass through the
laser pulse and the bubble. When entering the latter half of the wakefield, they are acceler-
ated and gain energy. If their energy exceeds the injection threshold, they are eventually
injected.

Self-injection

If the driver is highly relativistic (a0 � 1 for laser drivers or nb/n0 � 1 for particle
drivers) plasma waves exceeding the wave breaking limit can be driven. As shown in
subsection 2.6.3 the velocity of the electrons constituting the sharp density spike now
exceeds the phase velocity of the wake itself. The electrons which are fast enough to
overcome this threshold can slip into the accelerating phase of the preceding wakefield
period. As highlighted in Figure 2.10, this either happens longitudinally, where the
trajectory of an injected electron only has a negligible radial distance from the laser axis
(Figure 2.10(b)), or transversely, where the electrons are pushed away by the ponderomotive
force of the laser pulse. The remaining ion background pulls these electrons back to the
propagation axis where they reach the back of the bubble (Figure 2.10(a)) [114]. Since
the laser driver evolves when propagating through an underdense plasma and self-focuses,
for a laser driver of sufficient power (cf. Eq. (2.62)), self-injection naturally takes place as
shown in the following.
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2. Laser-Matter-Interaction

A thorough analysis conducted in [115] and [116] leads to an analytical expression for
self-injection to occur in the bubble regime, when

kpR > 2

√
ln
(

2ncrit

3ne

)
−1. (2.141)

With Eq. (2.130) this condition for self-injection becomes

a0 > a0,si := ln
(

2ncrit

3ne

)
−1, (2.142)

which is routinely fulfilled in experimental conditions when taking the evolution of the
normalized vector potential into account during propagation through a plasma, since
typical LWFA parameters (ne = 3×1018 cm−3, λ = 800nm→ ncrit ≈ 1.7×1021 cm−3)
lead to a0,si ≈ 5 [116]. Self-injection due to wave breaking in the relativistic regime,
therefore, is an inherent feature of LWFA. Note that by adjusting the plasma density ne in
the experiment, self-injection can be deliberately turned on or off.

As such, no sophisticated target design is necessary to accelerate electrons via self-injection,
as opposed to the injection mechanisms presented below that require complex target
designs. The drawback of this rather primitive scheme is its strong dependence on the
driving laser pulse and its persistent injection into the back of the bubble over a wide
propagation distance in the plasma. Due to this continuous process, early injected particles
are accelerated over a longer distance than compared to later ones. Therefore, a large
energetic bandwidth of the accelerated particles is inherent to this injection scheme.
Moreover, due to the highly nonlinear process of wave breaking even small variations in the
driver cause significant changes to the acceleration parameters which makes this injection
mechanism very unstable. Improved injection schemes aim at decoupling the injection
from the laser pulse evolution. These externally controlled mechanisms not only lead to a
much higher shot-to-shot stability but may also restrict injection to a very localized point
in space and time, which ultimately leads to a small energetic spread of the accelerated
particles.

Controlled Injection

Over the last two decades, many different controlled injection schemes have been invented
and studied to meet the aim of high charge quasi-monoenergetic electron bunches with
decent shot-to-shot stability (e.g., ponderomotive injection [117], density down ramp
injection [118], self-truncated ionization injection [46]). Subtle adjustments and fine-
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2.6. Laser Wakefield Acceleration

tuning of the parameter range offered by these controlled injection mechanisms allow for
tailored quasi-monoenergetic electron bunches. Three of these injection schemes will be
described in further detail since they were either employed in the experiments presented in
this work or serve as benchmarks concerning stability, charge, and energetic bandwidth.

Ionization Injection The basic principle of this method is the excitation of a wakefield
in a plasma created from a mixture of gases of high and low atomic numbers. By that,
electron energy levels with very different binding potentials are provided which are ion-
ized by different laser intensities. To avoid ionization defocusing (cf. section 2.5.2) the
concentration of the high Z gas component needs to be kept below some percent. As low
atomic number gas, typically hydrogen or helium are used, whereas the high Z component
is mostly made up of oxygen or nitrogen. In this case, the leading edge of the ultrashort
laser pulses fully ionizes the low Z gas and only strips the nitrogen/oxygen from its outer
electrons. These are the electrons that create the accelerating structure of the wakefield.
They constitute the plasma wave and do not gain any significant momentum by the pon-
deromotive force. The remaining inner electrons are tunnel ionized (cf. section 2.5) by the
peak intensity of the driver [119]. These electrons are "born" inside the potential well of
the first wakefield period. Being at rest initially, they slip back into the accelerating phase
of the wake where they gain kinetic energy. If these newborn electrons reach the phase
velocity of the plasma wave γp = γthres before they are overtaken by the wake, they are
trapped [120]. This injection mechanism is continuous if a homogeneous mixture of light
and heavy gas atoms is used. It therefore suffers the same drawbacks as self-injection [57].

Shock Front Injection The shock front injection technique nowadays arguably carries
the greatest potential for stable, high charge monochromatic LWFAs. Here, a supersonic
gas flow emitted by a de Laval nozzle is perturbed by a sharp object, typically a razor
blade. This creates a sharp density down ramp (cf. subsection 4.2.1). The sudden drop in
plasma density leads to a prompt increase of the bubble radius R ∝

√
a0/ne according to

Eq. (2.130). This elongation of the accelerating structure leads to the injection of electrons
into the accelerating phase of the wakefield [48, 121]. Figure 2.11 shows three snapshots
of the electron density depicting the evolution of the first bucket when passing through the
sharp density down ramp. Fine-tuning the plasma density such that no self-injection occurs
before and after the shock front (e.g., via Eq. (2.142)), the injection is locally well-confined.
Depending on this temporal and local confinement, all the injected electrons ideally now
experience the same accelerating force for the same acceleration distance and therefore
their stability and energy spread are greatly improved. Simulations like the one shown in
Figure 2.12 suggest that the vast majority (∼ 99%) of shock-injected electrons stem from
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Figure 2.11.: Evolution of a laser-driven wakefield during propagation through a
sharp density down ramp with a0 ≈ 3.7. Due to the higher plasma density in (a), the
bubble expands when passing through a sharp density down ramp, here located at
∼ 800 µm – 819 µm (b). Within 19 µm the plasma density drops from 6.0×1018cm−3

to 3.0×1018cm−3. The hereby associated elongation of the plasma wavelength leads to
the injection of electrons into the accelerating phase of the wakefield (c).

hydrogen atoms longitudinally located less than λp/2 away from the density down ramp
with a radial distance to the laser propagation axis of 0.3λp to 0.6λp

1. The shock injection
technique therefore clearly favors transverse injection (cf. Figure 2.10). Modifications
to the shock front parameters such as the backing pressure, shock front angle, or blade
position give further access to crucial bunch properties like energy spread, pointing [122]
and peak energy.

The first experimental demonstration of shock front injection was performed by Schmid
et al. [123] a decade ago. From then on, shock-front-driven LWFAs have shown their great
potential in delivering unprecedented total electron bunch charges and charge densities at
superior shot-to-shot stability, as will be presented in later parts of this work (cf. chapter 5)
[38].

Colliding Pulse Injection Another method to control injection requires a second laser
pulse counterpropagating and colliding with the main pulse. Depending on the exact
conditions, the interference of both pulses creates a beat wave pattern [124]. This beat
wave gives background electrons a momentum kick by heating them. This pre-acceleration
facilitates their injection [125–128]. In the highly nonlinear regime, so-called optical

1When simulating shock-injected LWFA we take advantage of this well-confined region. The macroparticle
sampling rate is adjusted for different plasma regions according to their relevance for simulating the
injected charge. With this adaptive mechanism, the PIC code runs one to two orders of magnitude faster
without losing accuracy for the simulated charge. Details on the implementation of this adaptive sampling
rate are given in the appendix in section B.1
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Figure 2.12.: Initial position of shock-injected and accelerated electrons. By tracking the
accelerated electrons their initial spatial coordinates can be retraced. Together with their
radial density, the heat map visualizes this information. The plasma density is plotted
in red and the number of accelerated electrons per 0.1 µm in green. Plasma around
the gas density shock contributes more than 99% of all the electrons to the acceleration
process. To be injected and accelerated, the particles have to be located less than roughly
half a plasma wavelength away from the axis. For this specific simulation, the peak gas
density corresponds to a plasma wavelength of ∼ 13.6 µm. At the density plateau it is
λp ≈ 19.3 µm. The laser power is initialized with 50TW and the peak vacuum vector
potential at the beginning of the shock front is set to a0 ≈ 2.3.

transverse injection dominates the injection process [129]. Although this specific mech-
anism has not been investigated experimentally yet, PIC simulations suggest that in this
regime the bubble size decreases during the pulse collision by reducing the efficiency of
the ponderomotive force. After the pulse collision, the bubble recovers its original shape
by expanding to its previous size. Hence, this mechanism closely resembles shock front
injection in its underlying physics.

Both shock front injection and colliding pulse injection share the capability of producing
ultrashort quasi-monoenergetic electron bunches. The energy of these particle bunches
furthermore can be tuned by adjusting the total acceleration length, e.g., by manipulating
the position of the shock front or by shifting the collision point. Limits to the acceleration
mechanism and corresponding scaling laws will be the subject of the following section.
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2. Laser-Matter-Interaction

2.6.7. Acceleration Limits and Scalings

The particles’ energy gain in a LPA is limited by the amount of energy the driver can
transfer to the plasma in its wake. The energy flow to excite the wake eventually drains the
driving potential. Moreover, in the case of LWFAs, the electrons finally leave the phase
favorable for acceleration (cf. subsection 2.6.5). These constraints fundamentally limit the
energy gain of plasma accelerators.

Dephasing Length

As the group velocity of the laser pulse is reduced in plasmas according to Eq. (2.43)
the trapped and accelerated electrons slip forward in the wakefield. When the electrons
pass ξ ≈ λp,n/2 (cf. Eq. (2.115)), they enter the decelerating phase of the wake since the
longitudinal electric field now changes its sign. The slope of the phase space trajectory
becomes negative and the electrons lose kinetic energy (cf. Figure 2.9). The total distance
in the laboratory frame the electrons have traveled until they reach the decelerating phase
is called dephasing length Ld. To maximize the kinetic energy, this is the point in LWFA
where the plasma should end to stop the acceleration process. An expression for Ld can be
derived in the one-dimensional theory by exploiting the condition

Ld

(
1−

vgr

c

)
=

λp,n

2
. (2.143)

With Eq. (2.43) and Eq. (2.45) this becomes

Ld =
1

2(1−η)
λp,n ≈

ω2

ω2
p

λp,n. (2.144)

Substituting the nonlinear plasma wavelength according to Eq. (2.115), we get [130]

Ld ≈
ω2

ω2
p

λp

1, a0� 1,
√

2a0
π

, a0� 1.
(2.145)

Note that this dephasing limit is one of the major limitations for energy gain in LWFA and
can hardly be circumvented. Methods to overcome dephasing involve creating a plasma
density up ramp after the injection such λp,n becomes smaller the longer the acceleration
distance, imprinting advantageous space-time correlations on the laser pulse ("flying
focus" [131, 132]) or staging the accelerator [130]. Yet, some of these concepts are very
ambitious and their experimental implementation is still under research [133, 134]. Of
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2.6. Laser Wakefield Acceleration

course, replacing the driver with a particle beam (PWFA) that is not subject to the reduced
group velocity also overcomes the dephasing limit, but suffers other problems (e.g., limited
transformer ratio [135], etc.).

Pump Depletion and Etching

The excitation of a plasma wave constantly transfers energy from the driver to the wake.
The acceleration process ceases when a significant fraction of the driving potential is
consumed. For LWFAs, the corresponding acceleration length – the so-called pump
depletion length Lpd – can be calculated by equating the laser pulse energy to the energy
left behind in the wake. In one dimension and for a flattop laser pulse of optimal length,
this leads to [95, 130]

Lpd =
ω2

ω2
p

λp


2
a2

0
, a0� 1,

√
2a0
π

, a0� 1.
(2.146)

Assuming a laser pulse of Gaussian shape, the depletion length can be approximated by
[95]

Lpd =
ω2

ω2
p

λp


2.8
πa2

0
, a0� 1,

4.4
π
, a0� 1.

(2.147)

Note that the pump depletion length in the highly relativistic regime is independent of a0

for a Gaussian laser pulse as opposed to the flattop case. This is due to the fact, that the
optimal length to resonantly drive the wakefield scales as ∼ a0 in the latter case, whereas
for a Gaussian laser pulse the optimal length is independent of a0 (see section 2.6.2) [95].

In the linear regime a0� 1 the electron energy gain is limited by the dephasing length
(Ld < Lpd), whereas in the nonlinear regime (a0� 1) Lpd . Ld. Therefore, when tapering
the density profile to avoid electron dephasing in the relativistic regime, one has to take
pump depletion into account. Again, staging the acceleration process circumvents both
limits by replacing the drained driver with a new one in addition to readjusting the
phase relation of the laser pulse to the particle bunch [136]. However, the experimental
implementation of this technique is still under research and remains extremely challenging
[134].

As the very front of the laser pulse interacts with the highest electron density, this part of
the driver is exposed to the highest energy loss and by that slowly erodes. An expression for
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this so-called etching velocity is given in [137], vetch ≈ cω2
p/ω2, which can be translated

to a depletion length in three dimensions Lpd,3D as follows. The time it takes to ’etch away’
a pulse of length cτFWHM is denoted by tpd,3D. Up to this point, the laser has traveled the
distance Lpd,3D = ctpd,3D. Therefore, this depletion length in three dimensions is given by
[41]

Lpd,3D = ctpd,3D = c
cτFWHM

vetch
=

ω2

ω2
p

cτFWHM. (2.148)

The etching velocity in turn reduces the group velocity of the driving laser pulse, such that
the electrons enter dephasing earlier [41]. The dephasing length in three dimensions Ld,3D

is therefore given by [41]

Ld,3D

(
1−

vgr

c
+

vetch

c

)
= Ld,3D

3ω2
p

2ω2 =
λp,n

2

⇒ Ld,3D =
ω2

3ω2
p

λp,n ≈
ω2

3ω2
p

2R≈ 2ω2

3ω2
p

2
√

a0

kp
=

ω2

ω2
p

λp
2
√

a0

3π
, (2.149)

where we have applied Eq. (2.130) and expanded the refractive index η given in Eq. (2.45)
for ω2

p/ω2� 1 according to

vgr

c
− vetch

c
= η−

ω2
p

ω2 =

√
1−

ω2
p

ω2 −
ω2

p

ω2 ≈ 1−
3ω2

p

2ω2 . (2.150)

In practical units, this length can be calculated by

Ld,3D[mm]≈ 21×λ [0.8µm]−
5
3 ne[1018 cm−3]−

4
3 P[100TW]

1
6 (2.151)

and typically lies in the range of one to few millimeters. Specific values for the pump
depletion and dephasing length are summed up in Table 2.2 presented in section 2.8.

Ideal Energy Gain

The optimal energy gain is composed of the mean accelerating field Ē times the acceleration
distance Lacc until dephasing/pump depletion:

W = eĒLacc. (2.152)
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For Ez < EWB and an ideal acceleration length of Lacc ≈ Ld (linear case), resp. Lacc ≈ Lpd

(nonlinear case), we can estimate in the one-dimensional case [56, 113]

Wmax = e
Emax

E0
E0

Ld

Lpd
= mec2 ω2

ω2
p

πa2
0, a0� 1,

4.4
√

2a0, a0� 1,
(2.153)

where we have used the identity E0 = (2πmec2)/(eλp) and Emax which has already been
calculated in Eq. (2.111).

Of course, this one-dimensional theoretical estimation neither includes laser pulse evolution
effects like self-focusing nor accounts for laser-plasma instabilities or guiding effects.

A more accurate estimation in three dimensions is given by Lu et al. [41] who combined
analytical theory for the bubble regime with PIC simulations to obtain the following scaling
laws. The maximum longitudinal electric field in the blow-out regime can be estimated
by Eq. (2.134). Since the electric field is quasi-linear, the average electric field that the
electrons experience until dephasing is then approximately half the maximum and hence
given by

Ē ≈ E0

√
a0

2
, (2.154)

where we made use of Eq. (2.134).

Together with Eq. (2.149) we can simplify Eq. (2.152) according to [41]

W = eĒLacc ≈ eE0

√
a0

2
ω2

ω2
p

λp
2
√

a0

3π
=

2
3

ω2

ω2
p

mec2a0 = mec2

(
8Pe2

27πε0m2
ec5

) 1
3 (ncrit

ne

) 2
3

,

(2.155)

where we have used eE0λp = 2πmec2, Eq. (2.68) and Eq. (2.62) in the final step.

When converting to practical units, we get [41]

W [GeV]≈ 0.38×
(
λ [µm]

)−2
(

ne[1018 cm−3]
)−1

a0

≈ 0.29×
(
P[TW]

) 1
3
(
λ [µm]

)− 4
3
(

ne[1018 cm−3]
)− 2

3

≈ 1.8×
(
P[100TW]

) 1
3
(
λ [0.8µm]

)− 4
3
(

ne[1018 cm−3]
)− 2

3
. (2.156)
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Table 2.1.: Overview of the above derived scaling laws obtained from analytical theory for
the one-dimensional case and corresponding quantities based upon the phenomenological
theoretical framework for the three-dimensional nonlinear regime by [41].

Regime a0 Lacc Wmax/(mec2)

Linear < 1 ω2

ω2
p
λp Eq. (2.145) π

ω2

ω2
p
a2

0 Eq. (2.153)

1D Nonlinear > 1 ω2

ω2
p
λp

4.4
π

Eq. (2.147) ω2

ω2
p
4.4
√

2a0 Eq. (2.153)

3D Blow-out > 2 ω2

ω2
p
λp

2
√

a0
3π

Eq. (2.149) 2
3

ω2

ω2
p
a0 Eq. (2.155)

Note that reducing the plasma density ne leads to higher beam energies W and the much
stronger dependence of the beam energy on ne than on the laser pulse power P.

In terms of the critical power for relativistic self-focusing, the above expression may be
reformulated as [41]

W [GeV]≈ 3.9
(

P
Pcrit

)− 2
3

P[100TW], (2.157)

where we made use of Eq. (2.63) and Eq. (2.68). An overview of the above-derived scaling
laws is given in Table 2.1.

Eq. (2.156) suggests a maximum energy gain for our experiments of ∼ 785MeV per
electron (see Table 2.2 in section 2.8) which agrees with experimental data (cf. chapter 5).

Accelerated Charge

From the energy balance, the total number N of accelerated electrons can be deduced.
By integrating the field energies Ez, Er and Bθ given in Eq. (2.132), Eq. (2.135) and
Eq. (2.136), we get the total energy Etot available to accelerate N particles [107]

Etot =
1

60
(kpR)5 4πε0m2

ec5

e2ωp
. (2.158)
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Assuming each particle experiences an average field of Ē (cf. Eq. (2.154)), we finally
obtain [41]1

N ≈ 16
15

ε0

e
λ

√
P

4πε0c
= 2.5×109×λ [0.8µm]

√
P[100TW]. (2.159)

In practical units, the total accelerated charge Qtot = Ne is given by

Qtot[nC] = 0.053×λ [µm]
√

P[TW] (2.160)

= 0.41×λ [0.8µm]
√

P[100TW]. (2.161)

Note that Qtot is independent of the plasma density. For the ATLAS-300 laser we find
Qtot ≈ 360pC which is in good agreement with our experimental findings (cf. chapter 5)
and nicely matches corresponding PIC simulations.

A simulation of the ATLAS-300 accelerator is shown in Figure 2.13, depicting the evolution
of the electrons’ energy spectrum during the acceleration process and the charge density.
The accelerated charge in the first bucket amounts to ∼ 330pC, which nicely agrees with
theoretical predictions. The maximum energy gain, however, differs by a factor of two
compared to Eq. (2.156). We attribute this deviation mainly to beam loading effects which
will be discussed in section 2.7.

Efficiency

An estimate for the efficiency Γ of the accelerator can be obtained by combining Eq. (2.156)
and Eq. (2.159) to get the total energy Wtot transferred to the accelerated particles

Wtot[J]≈ 0.7×λ [0.8µm]−
1
3 P[100TW]

5
6 ne[1018 cm−3]−

2
3 . (2.162)

For the ATLAS-300 we calculate Wtot ≈ 0.26J which justifies the term "joule-class" LWFA
for accelerators in a similar parameter range.

With a typical pulse energy of EL ≈ 2.1J, the three-dimensional theory predicts an effi-
ciency of the whole acceleration process of

Γ =
Wtot

EL
=

0.26
2.1
≈ 12%. (2.163)

1A very different approach to estimate the total number of accelerated electrons is pursued by [138]. Based
on a scale-invariant reformulation of laser-plasma interaction, their similarity theory leads to the same
scaling law with slightly different prefactors.
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Figure 2.13.: Electron energy vs. acceleration length based on a PIC simulation. The
electrons are injected via shock front injection at z≈ 800 µm and accelerated for more
than 4mm. The plasma density profile is plotted in gray. The electrons start to dephase
at z≈ 4.5mm where they have reached more than ∼ 250MeV. Only electrons above
γthres ≈ 24 are plotted. The driving laser pulse was initialized with a power of 50TW
resulting in a vacuum a0 of ∼ 1.5. The electron energy spectrum at the very end of the
acceleration process is plotted in red. The accelerated charge in the first bucket is 332pC.

Assuming a roughly resonant length of the pulse (cτ ≈ R ≈ 2
√

a0/kp), the laser pulse
energy E scales as E = Pτ ∝ P

√
a0 ∝ P

7
6 (cf. Eq. (2.68)). Hence, the efficiency drops for

higher laser powers [41]

Γ ∝
P

5
6

P
7
6
= P−

1
3 ∝ a−1

0 . (2.164)

2.7. Beam Loading

Up to now, we have only considered the driver as the sole generator of the wakefield.
However, as the injected and accelerated charge increases, the self-fields of the particle
bunch become non-negligible. Coulomb interactions between both the accelerated charges
themselves and with the surrounding electrons superimpose the accelerating fields which
may alter the wakefield structure and change the acceleration dynamics significantly.
Figure 2.14 for example depicts the wakefield of a shock front LWFA where the injected
charge is large enough to significantly interact with the surrounding plasma and to deform
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Figure 2.14.: PIC simulation depicting the wakefield structure of a shock front LWFA in
the partially broken regime with a0 ≈ 2.6 and n0 = 3.0×1018cm−3. The contour lines of
the laser’s electric field, as well as its directional derivative, are also plotted. The wakefield
behind the driver forms a chain of bubbles. Some electron trajectories color-coded by
their initial radial distance from the laser propagation axis are plotted to illustrate how
this structure is created. Their respective line thickness depicts the corresponding relative
charge of the macroparticle. The electrons in the leading bubble were injected via a
sharp density shock front and constitute an accelerated charge of ∼ 750pC. Compared to
Figure 2.7 one notices that the self-fields of these electrons not only deflect the trajectories
of other electrons but also deform the shape of the back of the bubble to a triangle
(cf. subsection 2.6.4).

the shape of the leading cavity (in sharp contrast to Figure 2.7). As we have seen in
subsection 2.6.2, the driving potentials of both the laser driver and the accelerated particle
beam superimpose and consequently the accelerating dynamics is modified. This so-called
beam loading effect can be exploited to flatten the fields along the bunch such that all
electrons experience the same accelerating forces during the acceleration process. This
effect allows for the generation of electron bunches of very low energy spread.
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Figure 2.15.: Beam loading effects on different wakefield quantities for relativistic laser
drivers based on Eq. (2.165). The strength of beam loading is varied by changing the peak
normalized density of the Gaussian electron beam from 0 to 0.4 and 0.8. The center of
the electron beam is located at ζ/λp =−0.75. Due to the presence of the particle beam,
the accelerating field in bold green is changed significantly at the position of the electron
beam (black line).

2.7.1. Beam Loading in 1D

In the ultra-relativistic one-dimensional wakefield theory, beam loading can be treated
fully analytically. Reverting to Eq. (2.109),

1
k2

p

∂ 2ϕ

∂ζ 2 =±nb

n0
+

1+a2

2(1+ϕ)2 −
1
2
, (2.165)

it becomes clear that the wake’s potential is composed of both the potential of the particle
bunch and the potential of the driving laser pulse. If nb/n0 becomes comparable to the
second term, the fields of a pure laser-driven wake are significantly changed.

The effect of beam loading on the wakefield quantities is illustrated in Figure 2.15 for
varying charge densities and in Figure 2.16 for different distances of the electron beam to
the laser pulse as the primary driver of the wake. When the beam is sitting in the second
half of the wake bucket, its own wakefield interferes destructively with the main wake.
The overall accelerating field is reduced and, thus, the maximum possible energy gain is
lowered (cf. Figure 2.15). Hence, any bunch sitting in the accelerating phase of a wakefield
directly influences the accelerating fields it experiences. Energy conservation, of course,
dictates the reduction of the effective accelerating fields the higher the bunch charge. The
interference of both wakes can be analyzed by changing the relative distance between the
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Figure 2.16.: Beam loading for relativistic laser drivers depending on the longitudinal
beam position according to Eq. (2.165). In contrast to Figure 2.16 the peak of the
normalized density is kept constant whilst the position of the electron beam’s center (cob)
is varied from −1.0 to −0.75 and −0.5. The accelerating field in bold green is changed
significantly at the position of the electron beam.

drivers. The closer the two drivers, the more the individual wakefields get in phase and
interfere constructively. Consequently, the effective wakefield quantities are enhanced as
can be seen in Figure 2.16.

2.7.2. Beam Loading in 3D

From Eq. (2.165) one might conclude, that the bunch density distribution nb is the essential
parameter for beam loading. As explained in the following, in the purely beam-loaded
regime, where the plasma blowout radius is larger than the lateral size of the bunch (as
opposed to the beam-driven regime), the key parameter in this case actually is the beam
current. The following arguments are based on [38].

For a relativistic electron beam, the transverse fields are enhanced, whereas the longitudinal
ones are suppressed [58]. The fields of a highly relativistic electron bunch are therefore
almost entirely oriented in the radial direction. This electron bunch can therefore be
described by a charged cylinder with radius r0 and length L.

Let us consider a charged particle in the electron sheath around the blowout having the co-
ordinates (r,z), with r > r0. A drawing of this coordinate system is given in Figure 2.17(a).
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Figure 2.17.: (a) Schematic drawing of the coordinate system used to calculate the in-
fluence of bunch particles on sheath electrons. A test particle located at (z,r) is located
within this sheath and interacts with the particle bunch sitting in the rear half of the bubble.
The bunch is approximated by a cylinder (red) with radius r0 and length L. (b) shows the
normalized current profile of an optimal beam load, i.e. an electron bunch which generates
a constant longitudinal on-axis field Es. At ξs the trapezoidal current profile reaches its
maximum. ξ0 denotes the location, where the electron sheath reaches the ξ -axis. Within
the interval ξ0 < ξ < ξs, the current profile is linear in ξ , whereas outside this interval,
the optimal beam current vanishes.

According to Gauss’s law, the electric field at the position of the test particle is given by∮
A
E ·dA=

Q
ε0
, (2.166)

where Q is the total charge enclosed by the volume defined by the surface A. Exploiting
the radial symmetry, we can simplify

Er(r,z)2πr =
2π

ε0

∫ r

0
enb(r′,z)r′dr′. (2.167)

Since r > r0 and nb(r̃,z) = 0 for r̃ > r0, the upper integration limit can be replaced by r0

Er(r,z) =
1

rε0

∫ r0

0
enb(r′,z)r′dr′. (2.168)

The integral on the right-hand side simplifies to the electron beam current via

I(z) =
dQ
dz

dz
dt

= 2πc
∫ r0

0
enb(r′,z)r′dr′, (2.169)

where we have used z≈ ct for a relativistic electron beam.
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Inserting into Eq. (2.168) leads to

Er(r,z) =
1

2πcrε0
I(z). (2.170)

The electric field Er in the sheath of the bubble is therefore determined by the beam current
I(z). As the trajectories of the particles forming the electron sheath are governed by Er,
it follows, that in turn, the shape of the blowout depends on Er. The longitudinal fields
inside the cavity are again directly linked to the blowout shape via Ez(ξ ) ∝ rdr/dξ (cf.
Eq. (2.131)). Hence, beam loading in this regime depends on the shape of the beam current
[38].

To demonstrate this finding, we simulate electron bunches with identical total charges but
different currents in the wake of a laser driver. Only the longitudinal or lateral dimensions of
the bunches have been varied. Figure 2.18(a-c) shows three snapshots of these simulations.
Here, the length of the bunches has been changed to adjust the beam current. Although
the total charges are the same, the resulting shapes of the bubble and hence the fields Ez

differ substantially (cf. Figure 2.18(e)). If total charge and beam current are kept equal by
only changing the transverse size of the bunch (Figure 2.18(d)), the effect on the field is
negligible (red vs. black line in Figure 2.18(e))1.

As we did not measure the bunch durations in our experiments, we have to resort to
simulations to conclude that their effect on the beam current is much smaller than the one
by changes in the peak current itself (cf. chapter 6). This finding is supported by earlier
coherent transition radiation (CTR) measurements in the self-injection regime, which show
only small shot-to-shot fluctuations in the bunch duration [139]. It is therefore justified to
assume that these fluctuations mainly affect the amplitude of the beam current. Under this
assumption, the total charge is directly proportional to the beam current2. Hence, in the
following, we will stick to the convention and consider beam loading to primarily depend
on the total charge of the electron bunch.

2.7.3. Beam Loading in the Bubble Regime

Based on the phenomenological bubble theory detailed in [41], Tzoufras et al. [42, 43]
examined the interaction of an electron bunch with the nonlinear plasma wave itself. They

1In the case of beam-driven wakefields, where r ≯ r0, the above derivation breaks down and the simplifica-
tion made in Eq. (2.168) is not valid. As a result, the wakefield does not only depend on I(z) anymore
and changes with increasing bunch radius, as stated in [38].

2However, bunch length fluctuations certainly appear as "higher-order" corrections in our measurements
(cf. [38]).
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Figure 2.18.: PIC simulations showing the difference in beam loading for electron bunches
with the same charge (500pC). In (a)-(c) the charge is kept equal, but the length of the
electron bunch is varied, leading to different beam currents. Despite the same charge,
the on-axis longitudinal fields Ez (as shown in (e)) differ significantly. However, keeping
charge and current equal by only increasing the lateral bunch extension (d), the fields are
unaffected. Simulations provided by courtesy of A. Döpp.

found that a bunch load with trapezoidal current profile1, cf. Figure 2.17(b), reshapes the
bubble sheath according to Eq. (2.126), such that the accelerating on-axis field Ez becomes
longitudinally constant (Es) along the whole electron bunch. Hence, the energy spread on
the beam is minimized for this current profile, and we may modify Eq. (2.131) to

Ez(ξ ) =
ene

2ε0
rb

drb

dξ
= const =: Es. (2.171)

1The charge per unit length linearly drops from the front to the back of the particle bunch. The slope of this
current profile is proportional to Es. For more details, see [42].
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The maximum charge that can be accelerated while keeping the field constant is then given
by [43]

Qs =
1
43

(
kpR
)4 mec2

re

1
Es

, (2.172)

where re = e2/(4πε0mec2) is the classical electron radius. This equation can be converted
into a practical formula [42]

Qs[nC]≈ 0.0047×
mecωp

eEs

√
ne[1018 cm−3]

(
kpR
)4
. (2.173)

With Eq. (2.130) we can further replace the last bracket and simplify [42]

Qs[nC]≈7.23×
a2

0

Es[GVm−1]
(2.174)

≈4.0×λ [µm]
4
3 ne[1018 cm−3]

2
3 P[TW]

2
3 Es[GVm−1]−1, (2.175)

where Eq. (2.68) was used to replace the normalized vector potential in the last step.
Generally, Es is difficult to access and only attainable via experimental data. Nevertheless,
Ez,max from Eq. (2.134) can be used as the upper limit for this parameter [140]. Hence,
Eq. (2.174) transforms into a rough estimation for the charge necessary to flatten the
accelerating fields

Qs[nC]≈7.2×
a

3
2
0

E0[GVm−1]
(2.176)

≈0.048×λ [µm]
√

P[TW]. (2.177)

Therefore, under the assumption of a trapezoidal current profile, the accelerating fields
with Ez ≈ Es ≈ Ez,max become flat, when the cavity is loaded by Qs/Qtot ≈ 90% (cf.
Eq. (2.160)). For ATLAS-300 parameters, this leads to Qs = 330pC (cf. Table 2.2).

2.8. Overview of Important LWFA Parameters

Table 2.2 summarizes the most important LWFA parameters. Specific values for the
ATLAS-300 laser and accelerator are given, as well as corresponding references to the
preceding theoretical sections and equations.
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Table 2.2.: Key parameters of the ATLAS-300 wakefield accelerator and their specific values as determined by theoretical
concepts introduced in this chapter.

Quantity Symbol Value Reference

Laser central wavelength λ 800nm (measured)
Laser pulse energy on target EL 2.1J (measured)
Laser pulse duration (FWHM) τFWHM 27fs (measured)
Laser peak focal intensity I 5.5×1018 Wcm−2 (measured)
Plasma density n0 3.0×1018 cm−3 (measured)
Laser central frequency ω 2.4×1015 s−1 ω = 2πc/λ

Laser peak power on target P 75TW P≈ 0.94EL/τFWHM
Normalized vacuum vector potential a0,vac 1.6 Eq. (2.26)
Plasma frequency ωp 9.8×1013 s−1 Eq. (2.38)
Plasma wavelength λp 19µm Eq. (2.39)
Critical plasma density ncrit 1.7×1021 cm−3 Eq. (2.46)
Critical laser power Pcrit 10TW Eq. (2.63)
Matched radial laser spot size wmatch 12µm Eq. (2.66)
Matched normalized vector potential a0 3.9 Eq. (2.68)
Cold non-relativistic wave breaking field E0 170GVm−1 Eq. (2.118)
Matched bubble radius R 12µm Eq. (2.130)
Cold relativistic wave breaking field EWB 1.1TVm−1 Eq. (2.124)
Electron trapping threshold γthres 24 Eq. (2.137)
Pump depletion length Lpd,3D 4.7mm Eq. (2.148)
Dephasing length Ld,3D 4.6mm Eq. (2.151)
Ideal accelerated electron energy W 790MeV Eq. (2.156)
Accelerated charge Qtot 360pC Eq. (2.161)
Total particle beam energy Wtot 0.26J Eq. (2.162)
Acceleration efficiency Γ 12% Eq. (2.163)
Flat field beam loading charge Qs 330pC Eq. (2.177)
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Chapter 3

Particle-in-Cell Simulations

Due to its complexity, the analytical framework for underdense laser plasma interaction
is based on severe simplifications (reduction to one dimension or restriction to the linear
regime). In addition, such key processes as electron injection completely elude a self-
consistent analytical description. For accurate modeling, one has to resort to numerical
solutions of Maxwell’s equations [141, 142]. One way to numerically describe such
complex systems is by dividing the time evolution into a finite number of small time
steps. The size of these steps determines the temporal resolution of the simulation. The
particle distribution is sampled by so-called macroparticles (also called quasi-particles)
each representing many real particles. Since the Lorentz force determining the equation of
motion is only sensitive to the charge-to-mass ratio, these macroparticles follow the same
trajectory as real particles as long as scattering processes are negligible. The motion of
the macroparticles is calculated for each time step by the so-called particle pusher. The
resulting currents and charge imbalances leading to electromagnetic fields are calculated
per time step by the field solver and react back to the macroparticles and their behavior.
The continuous domain here is replaced with a discrete grid of points onto which the
electric and magnetic fields are mapped [64]. Derivatives may then be approximated by
differences between neighboring points of the grid.

At each time step, the following calculations are performed [59, 143]:

• Interpolate the E andB fields on the grid to the positions xi of the macroparticles

• Perform the particle push in time (update xi and pi via Eq. (2.28) for the next time
step)

• Calculate the corresponding charge ρ and current j densities from xi and vi

• Update the fields E andB on the grid by solving Eq. (2.2) and Eq. (2.4)

Such kinds of numerical codes are called particle-in-cell (PIC) simulations [144, 145].
Since their introduction in the late 50s [146] and early 60s [147], they have become an
indispensable tool in plasma physics. For both the particle pusher and field solver, many
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different schemes have been developed since then and been implemented into a variety
of different PIC codes [148]. The most relevant for the field of LPA are among others
OSIRIS [149], EPOCH [150], WARP [151], CALDER-Circ [152], PIConGPU [153] and
FBPIC [52]. All simulations in this work were done with FBPIC since it combines several
advantages which are highly beneficial for simulating LPA. This is why the distinctive
features of FBPIC shall be treated in the following.

3.1. FBPIC

The code FBPIC is a PIC algorithm for relativistic plasma physics specially developed
for laser and plasma wakefield acceleration [52]. It combines the advantages of both a
spectral 3D PIC code (robust against numerical artifacts) and the massive speedup of
cylindrical algorithms in quasi-rotationally symmetric scenarios. Standard 3D PIC codes
represent the fields on a generic Cartesian grid, which is computationally very expensive
[143]. However, for quasi-rotationally symmetric scenarios, it is much more efficient to
employ a cylindrical field representation and account for deviations from this symmetry by
introducing higher-order field modes. In this way, the code uses vastly less memory and
runs orders of magnitudes faster as in the two-dimensional case the number of grid points
scales as ∼ m∗Nr ∗Nl with m being the number of modes, Nr and Nl denoting the number
of radial and longitudinal grid points. In the Cartesian case, however, the total number
of grid points scales as ∼ Ny ∗Nr ∗Nl , where Ny denotes the number of grid points in the
third dimension. Depending on the physics at stake, m is on the order of ∼ 2−4, which
is orders of magnitudes lower than Ny and hence explains the much greater efficiency
for quasi-symmetric scenarios. Moreover, common PIC codes usually solve Maxwell’s
equations by discretizing the spatial and time derivatives via finite differences on a discrete
spatial grid. This technique suffers from spurious numerical dispersion, especially for
objects traveling close to the speed of light (e.g., laser pulses or accelerated particle beams).
This leads to substantial numerical artifacts if the time and spatial resolution are not chosen
with great care [154–156] and for example adapted to the Courant limit [141, 157]. In
FBPIC, however, the fields are decomposed into a discrete Fourier-Bessel series [158],
a linear combination of orthonormal Bessel functions (of the first kind), which is where
the name for this code is derived from. The fields are then solved in spectral space via
Fourier-Hankel transformations (Fourier transformation along the longitudinal dimension
z and Hankel transformation along the r-axis) allowing for the analytical integration of
Maxwell’s equations [52, 152]. These so-called spectral algorithms are free of numerical
dispersion and hence conditions like the Courant limit to avoid numerical artifacts are
irrelevant here [143]. Since LPA are quasi-rotational symmetric, the spectral cylindrical
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decomposition chosen in FBPIC makes this code fast and accurate for our applications
[143].

FBPIC can run on multi-core Central Processing Units (CPUs) or Graphics Processing
Units (GPUs), where the latter is typically significantly faster. Exploiting the quasi-radial
symmetry of typical LPA simulations, it is – as mentioned before – much more efficient to
decompose the fields using a cylindrical grid rather than a 3D Cartesian grid. Simulations
exploiting the radial symmetry are therefore sometimes referred to as quasi-3D or quasi-
cylindrical algorithms. Due to this cylindrical representation, macroparticles that were
initialized far away from the axis represent more electrons and hence have larger weight (cf.
Figure 2.14). This weighting factor must be considered when evaluating the simulations.

All the parameters necessary for conducting a FBPIC simulation are defined in a separate
input file which needs to be written by the user1. The quantities defined here can be
separated into technical parameters which set up the framework for the simulation (like
resolution in time and space, sampling rate, etc.) and physical ones, which directly influ-
ence the interaction processes (laser strength, gas density, etc.). Both types of quantities
are briefly discussed in the following.

3.1.1. Resolution and Number of Macroparticles

In order to decently mimic the underlying physics of LPA, typically more than 106 macro-
particles are required (for quasi-3D simulations; in full 3D simulations often more than
109 macroparticles are used) which makes such simulations very demanding as the par-
ticle pusher acts on each macroparticle separately. Hence, computer systems capable of
performing a massive number of tasks in parallel (e.g., CPU-Clusters or special GPUs)
are needed to keep the time expenditure for one LWFA simulation on the order of few
hours. Not only the size of the simulation box but also the number of macroparticles per
cell (defined by the sampling rate) as well as the temporal and spatial resolution (defined
by setting the grid parameters) crucially determine the computational cost but also the
accuracy of the simulation. Nevertheless, the spatial resolution in each dimension is
restricted by the smallest length scale of interest to be resolved (e.g., the wavelength of the
driving laser pulse for the longitudinal dimension). Consequently, for all these parameters
a trade-off between computational cost and accuracy must be found which requires some
experience with PIC simulations (details on the parameters chosen for simulations in this
thesis can be found in section B.1). In particular, a decent prediction for the accelerated
charge makes a high sampling of macroparticles necessary. Since the accelerated charges

1An example for such an input file is given in section B.4.
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in our experiments are injected very localized around the shock front, it is sufficient for
an accurate charge estimate to sample only the shock region finely. In all shock front
simulations presented in this thesis, the macroparticle density was varied for different
segments of the plasma target to achieve an adaptive sampling rate: particles from outer
regions which do not contribute to the total accelerated charge are sampled less accurately
than the region around the shock where injection happens. In this way, it was possible to
unite high simulation accuracy with low computation time. Further details are given in
section B.1.

3.1.2. Physical Parameters

Whereas the parameters discussed in the previous section settle the external framework for
the simulation, the remaining quantities to define determine the strength of the physical
laser-plasma interaction. For FBPIC simulations, these parameters characterize the laser
pulse (laser amplitude, laser waist, laser duration, and position) as well as the gas target (gas
density and profile). To tailor these simulations to our experiments, all these parameters
have been measured and accordingly adopted to the simulations. Further details are given
in Appendix B.

3.1.3. Simulation Analysis

The data generated by FBPIC is saved in the Hierarchical Data Format 5 (HDF5) at
certain time steps determined by the input file. All the simulated data in this thesis was
then analyzed and graphically processed with the help of python and the open standard
for particle-mesh data files (openPMD) [159] framework. More details are given in
Appendix B.
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Chapter 4

Experimental Setup

The general setup for LWFA experiments can be divided into three parts: the high-power
short-pulse laser system delivering the necessary energy to drive the wakefield, the gas
target where the electrons are accelerated, and finally the particle diagnostics utilized to
quantify the characteristic parameters of the particle bunch. These different parts will be
discussed in the following by taking the example of the LPA operated in the Laboratory
for EXtreme Photonics (LEX) driven by the ATLAS-300 laser system.

4.1. The ATLAS Laser System

As shown in the theory chapter, an adequate optical driver to efficiently accelerate electrons
in an underdense plasma has to meet several requirements:

• the FWHM laser pulse length should be around τFWHM ≈ λp/2c (cf. Eq. (2.100))

• the normalized vector potential should be large enough to enter the nonlinear regime,
hence a0 > 1 (cf. section 2.6)

• the focal spot radius should be around the matched beam spot size wmatch (cf.
Eq. (2.66))

Assuming n0 ≈ 3×1018 cm−3, a0 ≈ 2 and λ ≈ 800nm, the above requirements set follow-
ing rigid restraints to the laser system

τFWHM ≈ 30fs,

w≈ 10µm,

E ≈ 1J

Hence, at typical gas densities, a femtosecond laser system capable of delivering at least
tens of terawatts of output power is needed for LWFA experiments.



4. Experimental Setup

The Advanced Titanium Sapphire Laser System (ATLAS) has been built and constantly
upgraded over the past two decades to specifically meet these requirements. This 300TW
system was located at the LEX in Garching during the time the experimental campaign took
place. A complete layout for this CPA-based [27] high field laser is shown in Figure 4.1.

Titanium sapphire (Al2O3 doped with titanium ions typically around 0.1%) laser crystals
exhibit a broad gain bandwidth peaked around 800nm, excellent thermal conductivity,
as well as a wide range of possible pump wavelengths [160, 161]. Due to these unique
properties, titanium sapphire is by far the most widely used gain medium for femtosecond
laser systems and is also employed for each amplification stage in the ATLAS. The laser as
such may be divided into three main parts, the so-called front end, where the femtosecond
laser pulses are generated, stretched, cleaned, and spectrally shaped, the main amplification
stages, where the energy of the stretched and chirped pulses is increased, and the final part,
where the chirped laser pulses are compressed, diagnosed and sent to the experimental
chambers. These three main parts shall briefly be discussed in the following. A more
detailed description may be found in [162, 163].

At the very beginning of the laser chain, a commercially available Kerr-lens mode-locked
Femtolasers Rainbow oscillator delivers a train of ∼ 6nJ, τFWHM < 10fs pulses at a
repetition frequency of 70MHz, see Figure 4.1. From this pulse train, the so-called pulse
picker, a Pockels cell with polarizers, selects a single pulse every 0.1 seconds. These
selected pulses are then pre-stretched to about 3ps by transmission through an SF-14 glass
block and amplified to the mJ level in a circular multipass preamplifier (so-called booster).
A subsequent saturable absorber prevents the transmission of amplified spontaneous
emission (ASE) originating from the booster to increase the contrast.

The amplified pulses are then stretched to about 400ps in a grating-based Öffner con-
figuration stretcher setup [164]. A subsequently installed acousto-optic programmable
dispersive filter (AOPDF) (commercially sold under the name "Dazzler", [165]) allows for
the precompensation and fine-tuning of the pulses’ dispersion. The losses introduced by
these two elements are accounted for by a following high-gain regenerative amplifier which
boosts the pulses’ energies from some µJ to the mJ-level. This amplifier includes an addi-
tional acousto-optic programmable gain filter (commercially named "Mazzler", [166]) to
pre-shape the pulses’ spectrum to account for spectral distortions in the subsequent power
amplifiers (gain narrowing, etc.). Thereby, a FWHM spectral bandwidth of∼ 50nm can be
maintained. The following two multipass amplifiers further increase the energy to 20mJ.
In total four Pockels cells ensure high temporal contrast and reduce the repetition rate to
5Hz. The pulses have now been chirped, stretched, spectrally shaped and are energetic
enough to enter the main amplifier chain, consisting of three multipass amplifiers pumped
by commercially available neodymium-doped yttrium aluminum garnet (Nd:YAG) pump
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pumps (green) are only shown after the front end.
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lasers (sold by Amplitude Technologies [167]) at 532nm and pulse energies of 2J, 4J and
20J respectively. To reduce thermal effects, the final amplifier’s crystal is cryogenically
cooled. In total, the pulse energy is boosted by these three multipass amplifiers to 9J with
a shot-to-shot root mean square (RMS) stability below 0.7%1. The multipass amplifiers
themselves are separated by spatial filters to remove high spatial frequency modulations
from the beam profile and expand the beam diameter to 10cm.

Before being compressed by the grating compressor, the pulses’ wavefronts are measured
by a Shack-Hartmann sensor and appropriate corrections to a deformable mirror are
applied such that the wavefront becomes flat (Phase PtV ≈ 0.2λ , Phase RMS ≈ 0.03λ ).
This closed-loop adaptive optics ensures a homogeneous intensity profile on the delicate
compressor gratings and leads to a Strehl ratio above 0.9. The spatial intensity profile is
constantly monitored by a CCD camera measuring the leakage through one of the dielectric
mirrors. The recorded brightness of these images is cross calibrated to the pulse energy
and also serves as an energy meter during the experiments.

After compression down to τ ≈ 27fs, the pulses can either be guided to the experimental
chamber or fed to a sophisticated diagnostics setup used to further characterize and
accordingly adjust the pulses. Aiming at maximum focal peak intensity, the following
pulse properties are examined:

• Pulse front tilt ([168])

• Temporal pulse compression, diagnosed with a Grenouille (a device from Swamp
Optics [169])

• Temporal intensity contrast, measured with a third-order autocorrelator ("Sequoia",
sold by Amplitude Technologies [170])

• Spectral phase and spectral intensity, retrieved via self-referenced spectral interfer-
ometry (SRSI) by a "Wizzler" (a device from Fastlite [171–173])

A closed feedback loop between Wizzler and Dazzler applies corrections and fine-tuning
to the spectral phase allowing for pulse durations close to the Fourier limit of ∼ 20fs.

From the compressor, the pulses are sent to the experimental chambers through a pumped
beamline. The total losses introduced by the compressor and limited transmission through
the beamline reduce the pulse energy to 35%. Hence, optical pulses at a repetition rate
of 5Hz with an energy of 2.0 J to 3.1 J arrive at the target, corresponding to 70 TW to
110 TW.

1Due to the lower than specified energy threshold of the compressor gratings, the laser energy had to be
reduced during the experimental campaign to 6J before compression.
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Target Atlas-300

FROG

Hollow Core Fiber

Delay
Stage

Compression
Stage

Compression

Stage

Diagnostics Beam

Wedge Pair
Wedge Pair

Figure 4.2.: Schematic depiction of the probe setup. A small fraction (∼ 2%) of the ATLAS
beam is spectrally broadened in an argon-filled hollow-core fiber via SPM. A subsequent
set of chirped mirrors in combination with a wedge pair creates a transform-limited pulse
of less than 10fs duration. The delay stage permits the temporal synchronization to the
main laser pulse. The faintly drawn components are removable mirrors that are needed for
probe alignment and probe diagnostics.

When entering the chamber, a 1/2” diameter beam part of the main laser is coupled out and
reflected to the probe beam laser table [96, 174, 175]. A schematic depiction of this setup is
given in Figure 4.2. Here, this pulse is spectrally broadened in an argon-filled hollow-core
fiber via self-phase modulation (SPM) and further compressed to generate a few-cycle
probe laser beam of less than 10fs FWHM duration intended to transversely illuminate
the target area. A delay stage compensates path differences to the main beam such that
the probe beam is perfectly timed to record shadowgraphic snapshots of the laser-plasma
interaction (cf. Figure 4.3) [96, 176]. These images are also used to retrieve the plasma
density [177]. More details on these probe images are given in subsection 4.2.1).

An additional 1.5” mirror can be moved into the main beam path to generate a counter-
propagating "injector" beam (cf. Figure 4.5 in section 4.2). The timing of this beam can
be adjusted by an additional delay stage which changes the collider’s beam path length.
An f/26 off-axis parabolic mirror (OAP) focuses the colliding beam at an angle of 173°
to the main beam. The timing and position of the focus are both chosen such that this
counter-propagating pulse collides with the main laser pulse at the position of the gas
target to optically inject particles (cf. section 2.6.6 and its application in section 6.2). The
colliding beam has an energy of ∼ 0.3J, corresponding to a normalized vector potential of
∼ 0.9. The main part of the laser pulse, however, is focused by an off-axis f/25 OAP to a
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1 mm

Shock Front

Ionization Front

Figure 4.3.: Shadowgraphic image of the gas shock front. The laser driver is propagating
from left to right and ionizes the hydrogen gas. The beginning of the plasma filamentation
marks the ionization front of the laser pulse. The shock front generated by a silicon wafer
is clearly visible as well as injection radiation ([178]) in the center of the image. The
circular diffraction rings are generated by dust particles on the imaging optics.

FWHM spot size of ∼ 30µm. A wedge can be moved into the attenuated beam to image
the focal spot by a microscope objective onto a charge-coupled device (CCD) camera.
An image of the focal spot of the main beam is given in Figure 4.4(a). The intensity for
this focal spot is measured to peak at ∼ 8×1018 Wcm−2, which corresponds to a vacuum
a0 ≈ 1.9 (according to Eq. (2.26)). Around 30% of the pulse energy is concentrated in
the spatial FWHM around the maximum intensity. A high dynamic range (> 104) image
reconstructed from four different focal spot pictures with attenuations varying from ND0
to ND3 is given in Figure 4.4(b).

80



4.2. Experimental Chamber

(b)

−200 0 200
x [µm]

−200

0

200
y

[µ
m

]

XXX

(a)

x [µm]

−100 0 100 y [µm
]−100

0
100

In
te

ns
ity

[1
018

W
cm
−

2 ]

2

4

1015

1016

1017

1018

1019

In
te

ns
ity

[W
cm
−

2 ]

Figure 4.4.: Focal intensity distribution of the ATLAS-300 laser. A logarithmic plot of the
intensity profile in the focal plane is given in (a), whereas a linear surface plot showing
the focal intensity profile in a close-up is shown in (b). These high dynamic range plots are
composed of four single images of the focal spot with different but well-known attenuation.
Detailed quantities are given in the main text.

4.2. Experimental Chamber

Figure 4.5 shows a CAD drawing of the vacuum chamber used to perform the experiments.
The major components besides the driving laser pulses, which have already been described
above, are the target that provides the hydrogen gas, and where the laser-plasma interaction
ultimately accelerates electrons. The electron spectrometer utilized to determine the
accelerated bunch parameters is located at the very end of the chamber (right side in
Figure 4.5). The following sections describe these key components in more detail.

4.2.1. Gas Target

Typical gas targets for LWFA are gas cells or supersonic gas jets. Whereas gas cells are
mainly employed to examine self-injection in a turbulent-free environment, gas jets are
used in our experiments to study advanced injection schemes, in particular shock front
injection. A picture of the target area is shown in Figure 4.6.

Here, a de Laval nozzle with an orifice of 5mm (Mach number ∼ 6.3, [179]) was installed
upon a hexapod to generate a supersonic gas jet into which a sharp edge of a silicon wafer
projects (cf. Figure 4.7(a)). By interrupting the supersonic gas flow, it creates a shock
front that introduces a sharp density down ramp which is used to inject plasma electrons
into the wake structure (cf. section 2.6.6). The plateau gas density which follows the
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Laser Entrance

Driver OAP

Hexapod

Injector Beam
Injector OAP

Spectrometer

Drive Beam

Electron Beam

Figure 4.5.: CAD drawing of the experimental chamber. The main laser and injector beam
paths are shown in red. They are folded by mirrors which are mounted in aluminum towers.
The gas target is placed on top of the hexapod together with the focus diagnostics. The
electron spectrometer is situated at the very end of the chamber. Turbopumps (not shown
here) attached to the bottom of the chamber extract the hydrogen gas. The total length of
the chamber is 8m.

Wafer

Nozzle

Microscope

Laser Propagation

Direction

Hydrogen Supply

Shaft to Motor

Prope Propagation

Direction

Hexapod

Figure 4.6.: Picture of the target mounted on top of a hexapod. The major components
are labeled. For reference: the diameter of the gas nozzle’s orifice is 5mm.
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Figure 4.7.: Schematic drawing of the target setup (a) and retrieved gas density profile
(b). The 5mm nozzle is mounted on a hexapod to be movable in all directions. A sharp
knife edge protrudes into the supersonic gas jet to generate a shock – an abrupt jump
in the gas density. The gas density profile in (b) is interferometrically retrieved (blue)
by the setup described in Figure 4.8. The sharp density jump is followed by a density
plateau of ∼ 2.5mm length. The red data points mark spots where the density has also
been determined by measuring plasma wavelengths. They represent the mean of seven to
eleven distinct measurements at each marked position and are in good agreement with the
interferometric density retrieval.

sharp down ramp was adjusted to values between 3.0×1018 cm−3 to 4.0×1018 cm−3 for
the experiments described below (cf. Figure 4.7). The ratio between the gas density of
the shock and the plateau depends on the Mach number of the nozzle [180]. The gas
jet is triggered ∼ 5ms before the arrival of the laser pulse to establish a steady-state and
reproducible gas flow. The hydrogen gas that floods the vacuum chamber is removed
by four turbopumps. Depending on the gas pressure applied to the nozzle, the hydrogen
load on the pumps limits the maximum shooting frequency to ∼ 2Hz. The supersonic
gas jet has been characterized interferometrically to determine the plasma density present
during the interaction process, cf. Figure 4.7(b). To do so, a Nomarski-type interferometer
was set up. A scheme of this setup is given in Figure 4.8. When passing through the
target area, the phase shift induced by the plasma spatially distorts the probe beam. The
latter is afterward split up into two orthogonally polarized pulses by a Wollaston prism.
A subsequent polarizer aligns the polarization of both beams which are then recombined
such that undisturbed parts from one beam overlap with disturbed ones from the other,
resulting in a characteristic fringe pattern. This interference pattern is imaged onto a
CCD. The imprinted phase shift results in a deformation of the uniform fringe pattern
and can hence be extracted. By assuming rotational symmetry, the three-dimensional gas
distribution and its density are retrieved via Abel inversion [179, 181, 182]. The resulting
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Probe Atlas-300
Interferogram

CCD

Camera

PolarizerWollaston

Achromatic Lens

Target

Figure 4.8.: Sketch of the Nomarski-type interferometer setup. The probe beam illuminates
the interaction of the main laser pulse with the hydrogen gas target. A Wollaston prism
together with a polarizer creates two partially overlapping beams on a CCD. The gas
density can be retrieved by distortions of the interference pattern. For clarity, several
optical components (beam splitters, neutral-density filters, imaging optics) have been
omitted in this drawing. Further details are given in the main text.

gas density profile is plotted in Figure 4.7(b) and was adopted to set up PIC simulations
(cf. section B.2).

Unfortunately, this method requires a sophisticated post-analysis of the shadowgraphic
images and renders a live density retrieval inconvenient. Yet, a less accurate but much faster
way to locally determine the gas density is provided by measuring the plasma wavelength
on shadowgraphic snapshots of the laser-plasma interaction (cf. Figure 4.9). With the
approximation λp,n(a0) ≈ λp (cf. Eq. (2.115)), the electron density can be determined
via Eq. (2.39). This however requires sharp, high-contrast images of the plasma wave.
Nevertheless, both methods yield very similar results (cf. Figure 4.7(b))1.

4.2.2. Electron Diagnostics

The accelerated electron bunch is characterized for each shot by a magnetic spectrometer
located at the end of the vacuum chamber (cf. Figure 4.5). The distance between the nozzle
and the entrance of the spectrometer amounts to 2.1m. The spectrometer itself is composed

1More details about the interferometric gas density reconstruction may be found in [181–183].
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Main Laser

Shock Front

Collider
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(b)

Plasma Wave

1 mm

Figure 4.9.: Shadowgraphic image of colliding pulse injection and a laser-driven plasma
wave. (a) The main laser pulse is traveling from left to right, whereas the colliding beam
propagates in the opposite direction. Plasma filamentation visible as horizontal dark and
bright lines mark the laser beam path. A shock front forms at the very spot where both
beams collide [184]. The plasma wave visible at the right of the shock front is magnified
in (b). The pronounced ring structures are caused by diffraction at dust particles located
in front of the CCD camera. Both images are unprocessed data.
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of eight permanent dipole magnets with 40mm gaps, which are mounted with the same
orientation and are firmly attached to a steel yoke. The accumulated length of these eight
magnets sums up to 0.8m. The magnetic field residing in the gap at an absolute height
between 195mm and 345mm above the breadboard has been mapped by calibrated Hall
probes and averages to 0.85T. Scintillating screens (usually called "lanex") manufactured
by CAWO and commercially sold under the specification "OG16" [185] are positioned at
the entrance and beneath the magnets. Being hit by electrons the phosphorous materials
which these screens contain, convert a fraction of the deposited particle energy into photons
peaked around a wavelength of 546nm. The corresponding fluorescence lifetime of∼ 1ms
[186] is short enough to support single shot diagnostics up to 1kHz [187]. CCD cameras
triggered by the laser system record and save images of these fluorescing lanex shot by
shot. The accelerated electrons are detected on two different scintillating screens: Once
before entering the spectrometer and after being deflected downwards by the spectrometer’s
magnetic field. The first screen is used to determine the pointing angle, the shot-to-shot
pointing jitter and the divergence of the particle beam – hence its name "pointing lanex". It
can be flipped in and out of the particle beam path and is located 1.8m behind the target.
The pointing angle determined by this screen is crucial for the energy determination of
the particle beam, as the energy calibration of the spectrometer depends on the particles’
incident angle. Images of the pointing lanex in false colors are shown in Figure 4.10. The
second scintillator called "espec lanex" resolves the charge density and energy spectrum
(cf. Figure 4.11). For this purpose, the electrons’ trajectories through the magnetic field
depending on their momentum and incident angle were traced (cf. Figure 4.12) and the
spectrometer accordingly calibrated (cf. Figure 4.11(a))1. At a specific incident angle, the
electron’s point of intersection with the espec lanex is unique for a certain momentum.
This energy-position relation is plotted for various incident pointing angles in Figure 4.13.
The response for both lanex screens is linear for charge densities up to ∼ 33pCmm−2

[189], which is around one order of magnitude above the maximum peak charge densities
measured on the espec lanex in our experiments2.

For several shots, the pointing lanex was moved out of the beam path as it increases the
electrons’ divergence by scattering and therefore decreases the energy resolution of the
spectrometer. Comparing consecutive shots where the pointing lanex has been moved in
and out of the beam path alternately, the FWHM divergence measured in the transverse
direction on the espec lanex increases by ∼ 2.1mrad from ∼ (1.6±0.2)mrad (pointing

1The magnetic field was initialized according to the Hall probe measurements. The software used for
tracking the particles through the magnet spectrometer is developed and maintained by Pulsar Physics
[188]. For this work, the General Particle Tracer version 3.03 was used.

2Charge densities on the pointing lanex, however, may exceed this threshold leading to saturation. Therefore,
only the espec lanex was used to determine bunch charges and charge densities.
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Figure 4.10.: Image of the pointing lanex in false colors. In (a) an exemplary single shot
is shown. In (b) the accumulated response of the scintillator for 20 consecutive shots
is plotted. Their pointing jitters by ∼ 0.44mrad (std). The position of maximum charge
density for each shot is highlighted by black circles. Other parameters of the particle
beams are given in the main text (cf. chapter 5).
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Figure 4.11.: Energy calibration and raw data of the scintillating screen. In (a) the electron
energy vs. pixel as determined by a particle tracker is plotted. The tracker simulates the
electrons’ trajectories through the magnetic field of the spectrometer depending on their
energies. In (b) an exemplary shot as raw data on the energy lanex is presented (in false
colors). Further analysis of this shot may be found in the next chapter (see Figure 5.2).
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Figure 4.12.: Energy calibration of the energy lanex. Assuming a horizontal beam path of
the incident particles, the electrons enter the spectrometer at an absolute height of 300mm.
The magnetic fields deflect the charged particles on circular orbits. The radii of these orbits
depend on the kinetic energies of the particles. Depending on this radius, the respective
electrons leave the magnetic field at different longitudinal positions and hit the espec
lanex after a free vacuum drift at an absolute height of 160mm. Eight exemplary paths
of electrons passing the spectrometer with energies between 50MeV and 400MeV are
depicted. The respective longitudinal intersection of the trajectory with the lanex screen
is characteristic for a certain kinetic energy allowing for a distance-energy correlation
which is used to calibrate the espec lanex. Some calibration curves for different incident
angles are given in Figure 4.13.

lanex out) to ∼ (3.7±0.2)mrad (pointing lanex in). Provided the pointing lanex in front
of the spectrometer is flipped into the beam path to determine the incident angle of the
electrons, the energy calibration is adapted accordingly. Otherwise, the "0mrad" curve in
Figure 4.13 was applied for the energy calibration of the espec lanex. For the experimental
campaigns, the electron spectrometer was set up to detect electrons in the range of 30MeV
to 500MeV.

An absolute charge calibration of these screens was established by Buck et al. [189] and
Kurz [190] and referenced to a light source which is glued onto the scintillating screens.
From the recorded CCD images the relative brightness of this light source can be extracted
and put in relation to the scintillator response. In that way, the charge determination
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Figure 4.13.: Pointing calibration of the energy lanex. Monoenergetic electrons entering
the spectrometer’s magnetic field with positive (negative) vertical momentum hit the
scintillating screen at greater (smaller) distances. The distance-energy correlations for six
different incidence angles were simulated and used for interpolation of pointing angles
between −12mrad and 8mrad. By courtesy of H. Ding.

becomes independent of the imaging optics [190]. This light source consists of a 12mm
long glass cylinder measuring 2mm in diameter. It contains tritium gas, is hermetically
sealed and is covered with scintillating material. The radioactive gas in this capsule decays
exponentially and stimulates the surrounding scintillator via its beta decay [187]. The
half-life of the gas together with the degradation of the scintillating material combines
to a decay time of this light source of ∼ 5 years [189]. The brightness reduction of this
light source is measured and determined by a dedicated test setup [190]. Of course, the
brightness reduction of the reference light source is taken into account when regularly
recalibrating both the pointing and espec lanex1.

In summary, the fluorescence response of the pointing and espec lanex allows us to
determine several crucial beam parameters namely the divergence, pointing angle, absolute
charge density, total charge, and energy spectrum2.

1Details are given in Ding [183] and Kurz [190].
2Due to limited beam time, experimental setups to measure the remaining parameters like bunch duration

and beam current were not operated ([54]) and hence need to be extracted from PIC simulations.
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Chapter 5

High-Charge Electron Beams from Shock Front
Injection

Advanced injection techniques offer the advantage of delivering monochromatic high-
charge electron beams (cf. section 2.6.6). The shock front injection method used in our
experiments provides unprecedented performance regarding the stability, total charge,
spectral charge density and divergence of accelerated electron beams [38, 191]. These
quantities are crucial parameters for future applications of LWFAs. Especially, the total
charge which is linked to the beam current via the bunch duration is of eminent significance
for the occurrence of beam loading effects, which will be discussed in the following chapter.
Hence, a proper discussion of the performance of this LWFA is appropriate.

Figure 5.1(a) shows 100 consecutive angle-integrated electron spectra. The LWFA is
driven by the ATLAS-300 laser system operated at 75TW (power on target). The plateau
plasma density for this run was measured2 to be n0 = 3.0×1018 cm−3. We define the peak
charge as the integrated charge density around the peak above a certain threshold relative
to the maximum charge density. This threshold is often set to 0.5, corresponding to the full
width at half maximum (FWHM). However, to study beam-plasma interactions, a measure
that reflects the whole bunch charge more accurately is preferable. We therefore use 20%
of the peak charge density as threshold unless specified otherwise. This definition contains
most of the peak charge while omitting the low charge "dark current" (see for instance
Figure 5.1(b) and Figure 5.2). The mean charge within the peak is 338pC and fluctuates
by 11% (36pC RMS) at a mean peak energy of 216MeV with 4% shot-to-shot standard
deviation (std) with a RMS divergence of (0.40±0.09)mrad. Note that the accelerated
charge is in good agreement with theoretical expectations, whereas the measured energy
is a factor of ∼ 3.5 lower than the predicted ideal energy gain (cf. subsection 2.6.7). We
attribute the latter to a non-ideal energy gain disturbed by beam loading and an acceleration
distance shorter than the depletion and dephasing length.

2The plasma density in this data set was determined by measuring the plasma wavelength, see subsec-
tion 4.2.1
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Figure 5.1.: Shot-to-shot performance of the shock front injector driven by the 75TW
ATLAS-300 laser system. (a) The plot shows the angle integrated electron energy spectra
of 100 consecutive shots with low charge and energy jittering. The spectral charge density
is color-coded. A corresponding quantitative analysis is given in the text. (b) Calculated
average electron spectra. The dashed orange line is the average of all shots presented in
(a). Distinct features such as asymmetric charge distributions around the peak energy are
obscured by shot-to-shot fluctuations. To preserve such features in the average, we have
aligned the spectra according to their central energy (blue line). The error bars mark the
fluctuation in energy and spectral peak charge density. Plot (b) by courtesy of A. Döpp.

92



5.1. Influence of Laser and Gas Target Parameters

The FWHM absolute energy spread is (33.0±7.2)MeV (RMS), corresponding to a relative
energy spread of 15%. The average peak charge density is (11.7±1.4)pCMeV−1, with
up to 17pCMeV−1 for some shots. Note that the individual shots in Figure 5.1(a) have a
distinct spectral shape, with many of them being skewed towards lower energy (i.e., exhibit
a tail at higher energies). These features are lost when calculating the average spectrum
since shot-to-shot fluctuations naturally lead to a normally distributed average. We have
therefore realigned all the spectra according to their central energy (determined via a
Gaussian fit) to preserve such features – as depicted by the blue curve in Figure 5.1(b).

At the beginning of the experimental campaign, for some shots, the laser power was
increased to 110TW on target (corresponding to ∼ 3J, respectively ∼ 8.5J before the
compressor). Due to the increased fluence and first appearances of damages on the
compressor gratings, the laser power was later kept below 75TW on target (∼ 5.8J before
the compressor). For these high-energy shots, we observe peak charges around 440pC
and a total accelerated charge in the energy range above 100MeV of 650pC. The peak
charge density exceeds 18pCMeV−1. An exemplary 110TW shot is shown in Figure 5.2.
The one-dimensional divergence of this shot was measured on the espec lanex (since the
pointing lanex was flipped out) and amounts to 0.71mrad (RMS). The total energy of
the electron beam observed on the espec lanex is 160mJ. This corresponds to an energy
transfer ratio of ∼ 5.3% from the laser pulse to the electron beam. As expected, and
theoretically predicted by subsection 2.6.7, the accelerated charge increases with the laser
power. A laser power scan to experimentally determine this scaling is presented in the
following section.

The generated peak charges beyond 300pC and particle beam energies above 100mJ
indicate that shock front injection has evolved to a technique capable of delivering joule-
class electron beams with the benefit of a distinctly localized injection position [2, 3].
Given the total length of the acceleration stage, average accelerating fields can be deduced,
which makes this advanced injection technique attractive for a quantitative analysis of
beam loading effects.

5.1. Influence of Laser and Gas Target Parameters

The exact configuration of the gas jet as well as the properties of the focused laser pulse
deeply influence the laser-plasma interaction and accordingly affect the outcome of the
acceleration process [191]. Characteristic parameters of the driving laser pulse and the
gas jet have been studied in greater detail in the scope of this work both experimentally
and theoretically. These parameters are not only central to the stability of the accelerator
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Figure 5.2.: Electron spectrum of a 110TW shot. The total charge above the detection
threshold of 100MeV is 665pC. The peak charge (lightly shaded area) contains 66 %
of the total charge (i.e., 440pC). The charge within the FWHM (darker shaded area,
299pC) lacks the higher energetic part of particle bunch and is therefore inappropriate to
determine accelerated bunch charges. The spectral charge density peaks at 250MeV with
19 pC MeV−1.

but also handy to adjust the charge and energy of the particle beam as will be shown in
the following. Note that all theoretical parameter scans presented in the following span
different parameter spaces which intersect at a single point characterized by the laser power
P = 50TW, the focus position (relative to the shock front) zf = 0mm, the shock width
equal to λp and the maximum gas density at the shock of npeak = 2ne.

5.1.1. Scalings with Key Laser Parameters

In the scope of this work, two key parameters characterizing the laser pulse – namely
the laser power and longitudinal focal spot position – and their effect on the accelerated
electron bunch are examined.

Laser Power In order to study the electrons’ dependence on the laser power, we varied
the laser energy from 0.5J to 2J by detuning the delays of the pump lasers for the final
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Figure 5.3.: Measured peak charges of the electron spectra vs. laser power. The size of the
dots denotes the total charge of the electron bunch and the color encodes the central energy
of the peak. Note that this plot already shows beam loading as lower electron energies
(greenish dots) tend to be above average peak charge, whereas higher energies (reddish
dots) are generally located at lower peak charges. A linear fit (black dashed line) and
its corresponding 95% confidence interval (transparent gray area) show the correlation
between laser power P and peak charge Qpeak.

amplifiers. In this way, the amplifiers’ gain drops while thermal lensing [192, 193] remains
almost unaffected. The pulse energy for each shot was recorded by a cross-calibrated
leakage diagnostic (cf. section 4.1). Figure 5.3 shows the corresponding data with 100
consecutive shots.

A linear fit correlates the laser power to the peak charge according to

QPeak ≈ 5.5pC×
(
P[TW]−15TW

)
, (5.1)

where 15TW is the minimum laser power Pinj for injection to occur for this driver and target
configuration. The fact that for this power on target range evidently a linear correlation
between laser power and peak charge is established is no contradiction to the theoretically
deduced Qpeak ∝

√
P scaling (cf. Eq. (2.161)) as the latter always assumes a fully loaded

wakefield. Our measurements at these driving powers, however, probe the regime of
partially loaded wakefields. Corresponding simulations are plotted in Figure 5.4 and
suggest that the theoretically predicted

√
P scaling regime is retrieved for laser powers

above∼ 100TW. Below this value, a linear correlation between the charge and laser power
fits the data best.
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Figure 5.4.: Simulated accelerated bunch charge (dots) and energy (crosses) for different
laser powers. Below 100TW the charge correlates linearly with the laser power as
experimentally observed (dashed red line). The linear fit parameters deduce an injection
threshold of Pinj,2 ≈ 11TW. Above 100TW the theoretically predicted

√
P scaling fits the

simulated data best (dashed green line). The simulations are in good agreement with
experimental data for the accelerated charge, peak energy, and injection threshold Pinj
(compare to Figure 5.3). The red data markers tag the intersection point of all scanned
parameter spaces.

Laser Focus Position A second method to adjust the injected charge is realized by
bringing the target longitudinally in and out of focus. This is done by moving the whole
target setup with the hexapod. The amount of charge that can be trapped by a sudden
plasma density change depends on the bubble radius R which scales as R ∝

√
a0/ne (cf.

Eq. (2.130)). Hence, by shifting the target and hereby controlling the laser intensity at the
position of the shock, the number of accelerated electrons can easily be adjusted. In order
to quantify this effect, we have simulated different longitudinal focal spot positions from
−1mm to 1mm in 20 equidistant steps relative to the shock front (cf. section B.3). Eleven
of these simulations are displayed in Figure 5.5. This scan implies that the shock injection
process is even sensitive to focal shifts in the range of ∼ 0.2mm, which is well below
the Rayleigh length of ∼ 1.1mm. For our optical setup, such a focus shift corresponds
to a wavefront curvature in the near field of ∆λ ≈ 40nm = λ/20. Wavefront fluctuations
on this order of magnitude can easily be induced by unsteady thermal lenses in the laser
amplification stages or air turbulence in the optical beam path. Hence, these fluctuations
intensify for large beams and long beam paths as is the case for the ATLAS system [194].
This insight not only supports the need for wavefront stabilization for the driving laser but
might also explain one major cause for shot-to-shot fluctuations in the presented electron
data.
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Figure 5.5.: Simulation study of the influence of the longitudinal focus position relative to
the shock front [38]. For each data point, the beam charge (blue dot), the current (bottom
graph), integrated energy spectrum (right graph), and phase space are plotted. The red
dot marks the position zf ,rel := zf − zshock = 0 and was used as the reference case for all
other scans (cf. section B.3). The bottom row highlights the results for three distinctive
laser focal positions which include further details on the current profile, electron bunch
length, and spectral charge density. Note, that the shape of the electron phase space and
the corresponding energy spectra change with the amount of injected charge. This beam
loading effect will be discussed in chapter 6.
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Figure 5.6.: Experimental focus position scan. The data show 38 consecutive electron
spectra with different longitudinal focal spot position. More positive (negative) values
correspond to focal shifts towards the beam dump (parabola). A large focal detuning
produces less charge (blue dots) but higher peak energies, which confirms the findings
deduced from simulations. Note the peak spectral charge densities above 20 pC MeV−1

for the spectra at zf = 1.6 mm. These charge densities were among the highest recorded in
LEX. Unfortunately, the scan was aborted at zf = 0.6 mm and does not contain negative
focus positions.

The experimental data support this theoretically deduced correlation as shown in Figure 5.6.
In the zf = 0 setting, the focus of the attenuated beam is at the same longitudinal position
as the edge of the silicon wafer. The scan starts at zf = 3.6mm. Unfortunately, the
step size of ∆zf = −1mm is very large, and the scan was aborted when reaching zf =

0.6mm. Nevertheless, we can confirm, that the peak charge drops whereas the peak energy
increases for larger longitudinal focal detuning. In contrast to simulations, the accelerated
charge shows a less sensitive dependence on the focal spot position as electrons are even
accelerated with a focal shift of more than ±1mm.

5.1.2. Scalings with Key Target Parameters

Besides varying the driver’s parameters, we have also examined changing gas target
parameters, namely the height and width of the shock front. To assess their respective
influence experimentally, changes in the shock width or height respectively must not affect
other parameters like the plateau gas density or acceleration length. This is, however,
difficult to accomplish. For example, increasing the vertical distance between the focal
spot position and the gas target, of course, decreases the height and increases the shock
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5.1. Influence of Laser and Gas Target Parameters

width simultaneously, but also modifies the plateau gas density (cf. [179]). This makes it
impossible to extract correlations between the accelerated electron bunch and one single
target parameter. Therefore, we rely on FBPIC simulations to study the influence of
changing shock front heights and widths and to determine respective correlations with the
electron beam charge or energy.

Shock Width By keeping the plateau gas density and the peak density constant but
varying the width of the down ramp, the density gradient and its influence on the injected
charge can be studied. The simulated density profiles are plotted in Figure 5.7(b). This
study is of particular interest since the width of the shock front itself cannot be derived
from interferometric data. On the one hand, Abel inversion assumes axial symmetry
which is violated by the non-vertical course of the shock1. On the other hand, the probe
beam is diffracted by this density transition, which distorts the interferometric images.
Hence, the density reconstruction from interferometric data for the shock front is therefore
fraught with greater uncertainty. Our findings based on PIC simulations, however, suggest
only a minor influence on the accelerated electrons for shock widths in the range of
0.1×λp ≈ 2µm to 5×λp ≈ 100µm (cf. Figure 5.7). Neither the accelerated charge nor the
energy significantly depends on this parameter. It is therefore fair to assume a reasonable
transition length of ∼ λp and to generally adopt this transition width for further shock front
simulations.

Shock Height To determine the LWFAs sensitivity on the absolute height of the density
jump, the peak gas density npeak at the shock was varied for nine different simulations
between 1.2× ne and 4.2× ne, where ne = 3.0×1018 cm−3 is the plateau gas density.
On the scale of one plasma wavelength, the density drops from npeak to ne for all these
simulations. The corresponding gas densities are plotted in Figure 5.8(b). For higher gas
density jumps we observe more injected charge but less final bunch energies as depicted in
Figure 5.8(a). The charge dependence complies well with a Q ∝

√
npeak−npeak,0 scaling,

where npeak,0 ≈ 1.17× ne (see green fitted line in Figure 5.8(a)). These effects become
clear when recapitulating the physics of shock front injection (cf. section 2.6.6). The
prompt radial increase the bubble experiences when passing through the density down
ramp scales as R ∝ n−1/2

e according to Eq. (2.130). Hence, larger jumps lead to a more
pronounced growth of the bubble volume and thus more electrons are injected. The hereby
associated effect of decreasing final bunch energies is a direct consequence of beam loading
and will be elaborated on in the following chapter 6.

1A generalization of the Abel inversion which is less susceptible to such asymmetries is developed in Sävert
[181].
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Figure 5.7.: Simulation results of different shock widths (a) and corresponding gas density
profiles plotted around the position of the shock at z = 800 µm (b). The peak gas density
as well as the density plateau are kept constant. Neither the charge nor the energy shows
a significant correlation with the gradient of the density down ramp. The red markers
indicate the intersection point of all scanned parameter spaces.
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Figure 5.8.: Simulation results of different shock heights (a) and corresponding gas density
profiles plotted around the position of the shock at zshock = 800 µm (b). The shock width
as well as the density plateau are kept constant. Higher density jumps promote electron
injection. Hence, the accelerated charge increases whereas the peak energy decreases.
Again, the red markers indicate the intersection point of all scanned parameter spaces.
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Chapter 6

Experimental Study of Beam Loading

In this chapter, we present an in-detail experimental study of the interplay of the laser-driven
wakefield with the one created by the accelerated particle bunch itself. The discussion of
this so-called beam loading and its related effects in this chapter is split into two sections.

The first part of this chapter focuses on energy spectra of single electron bunches. Char-
acteristic parameters like the peak energy, the energy spread and the skewness of the
spectrum are examined relative to the peak charge. Two characteristic features for beam
loading are discussed, firstly a negative correlation between beam charge and peak energy
and secondly the skewness of the corresponding energy spectrum.

The second part of this chapter extends our analysis to dual-energy electron beams. Two
distinct experimental setups are presented to generate longitudinally separated electron
bunches in a driver-witness configuration. The two respective data sets are examined for
charge-energy-correlations between the driving and witnessing electron bunch and hence
allows us to analyze the accelerating fields in the first and second bubble. These intra-cavity
and inter-cavity beam loading effects are explained by tailored PIC simulations.

PIC simulations which yield deeper insight into the underlying physics are provided and
discussed throughout this chapter. As we present three different experiments, a separate
sketch of the respective experimental setup is given at the very beginning of each section.

6.1. Effects of Beam Loading on the Energy Spectrum

To study beam loading effects, we analyze 91 consecutive shots with a plateau plasma
density of n0 = 3.5×1018 cm−3. The experimental setup is similar to the one described in
subsection 4.2.1. A schematic drawing of the experimental setup is given in Figure 6.1.
On average, these shots contain (123±35)pC peak charge, spanning a range from 60 pC
to 180 pC. Within the probed charge interval, the relative FWHM energy spread increases
from ∼ 10% for low charges to ∼ 30% for high charges (cf. Figure 6.2). The maximum
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Beam-Loaded LWFA
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Nozzle

Blade

Electron

Beam

Figure 6.1.: Experimental setup for studying beam loading effects on a single electron
bunch. A corresponding simulation depicting the acceleration process in the plasma is
shown on the right. The driving laser pulse is color-coded, whereas the electron density
is given as gray background. The accelerated particle bunch is highlighted by the green
ellipse. In this experiment, an abrupt plasma density down ramp injects electrons into the
first wakefield period where this single bunch is further accelerated.

spectral charge density was determined to be 4.5pCMeV−1 measured for a shot with
162pC peak charge. In Figure 6.3(a) the shots of this data set are binned by their peak
charge. Furthermore, we observe a drop in maximum electron energy from 280MeV at
low peak charges to 200MeV at high peak charges (cf. black dots in Figure 6.3(a)). A
linear fit correlates the peak energy Epeak to the beam charge Q according to

Epeak ≈ (358±35)MeV− (1.01±0.06)MeV×Q[pC]. (6.1)

Additionally to the reduction in beam energy at higher charges, which is the characteristic
property of beam loading and already well-studied [45, 49], we also observe a change of
the spectral shape for high charge beams (cf. Figure 6.3(b)). The spectral shape of low
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Figure 6.2.: Absolute and relative energy spread versus peak charge. For high charges,
both the absolute (a) and relative (b) FWHM energy spread increases. The 95% confidence
intervals of the linear fits are depicted by the shaded area in both cases.
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Figure 6.3.: High shot-to-shot variations of the shock front injector. 91 consecutive shots
with varying energy are binned according to their peak charge (a). The peak energy of each
shot is indicated by a black dot. A linear trend is fitted to this data (black line) according to
Eq. (6.1) and its corresponding 95% confidence interval is shown as a gray-shaded area.
The peak charge clearly correlates with the energy. Two individual line-outs representing
the high and low charge case are highlighted in (b). A discussion of their distinct spectral
shape is given in the main text.

charge shots follows a quasi-Gaussian distribution and hence is almost symmetric around
the peak, whereas the spectral peak for high charge shots shifts towards lower energies,
leading to an asymmetric shape. This effect is more pronounced the higher the peak charge.

This skewness observed in our experiments may be quantified mathematically with statis-
tical measures. The third standardized momentum γ3, also called moment coefficient of
skewness (or simply skewness), defined as

γ3 := E

[(
X−µ

σ

)3
]
=

µ3

σ3 =
E
[
(X−µ)3

]
(E
[
(X−µ)2

]
)3/2 =

κ3

κ
3/2
2

, (6.2)

quantifies the lopsidedness of the random variable X (which is the energy spectrum in our
case). µ is the statistical mean, E the expectation operator, µ3 denotes the third central
momentum, σ the standard deviation and κi is the i-th cumulant. For distributions which
are symmetric around the average µ , the skewness γ3 vanishes. If the electron spectra
have a peak at higher and a tail at lower energies, γ3 becomes negative, whereas spectra
with γ3 > 0 are shaped oppositely. The larger |γ3|, the more pronounced this asymmetry
is. A demonstrative sketch of negatively and positively skewed probability distributions is
shown in Figure 6.4(a-b).
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Figure 6.4.: Calculated Skewness for beam-loaded electron spectra. The first column
illustrates the difference in shape for a positively (a) and negatively (b) skewed distribution.
In (c) the calculated skewness for each electron spectrum presented in Figure 6.3(a) is
depicted. Almost all spectra are positively skewed. The asymmetry increases for higher
peak charges which hints at beam loading effects. The 95% confidence interval is given by
the gray shaded area.

When calculating the skewness assigned to the spectral shape of the accelerated electron
bunch, special care must be taken to crop any dark current. This is accomplished by
defining a threshold below which the charge density is set to zero. Only if this threshold
is high enough, the analysis is confined to the main peak of interest. If dark current or
secondary peaks at different energies are taken into account, the calculated skewness of
the main peak may significantly change. An example of such a circumstance is given
in Figure 6.5(a). This whole spectrum is negatively skewed since the secondary peak
adds/increases the probability for the random variable to be left of the statistical mean.
The skewness decreases and becomes negative, although the main peak of interest clearly
leans towards the left and, hence, is positively skewed. The threshold must be adjusted and
checked for each data set to analyze. The exact value of this threshold parameter only plays
a minor role as long as all subsidiary peaks are cut away. In the analysis of Figure 6.4(c),
this threshold was set to 1.25pCMeV−1 which eliminates all the background except for
the main peak. The slope of the fit changes by less than 25% for thresholds in the range of
1.25 pCMeV−1 to 2.2 pCMeV−1. An application of this procedure to eliminate subsidiary
peaks in the calculated skewness is shown for 20 shots in Figure 6.5(b-c).
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Figure 6.5.: Caveats when calculating the skewness of an energy spectrum. An artificial
distribution with noise is plotted in (a). The main peak clearly tends towards the left and
hence is positively skewed (γ3 = 0.3). Nevertheless, the secondary small peak to the left
compensates for this asymmetry and the calculated skewness for the whole distribution
(gray) becomes negative (γ3 =−0.8). To avoid such distortions and to confine the analysis
to the part of the distribution we are interested in – the main peak – a well-chosen threshold
is employed. Only data above this threshold contribute to the calculation of skewness. In
this way, the asymmetry of the main peak in (a) is preserved and the calculated skewness
for the peak alone becomes positive (red). The first 20 shots from the above data set are
shown in (b). In (c) these shots are modified by erasing the charge density where the
threshold set to 1.25 pC MeV−1 is not surpassed. Hence, the function to calculate the
skewness for each spectrum is confined to the main peak of the charge density.

Indeed, when analyzing the skewness for each spectrum of the dataset shown in Figure 6.3
individually, positively skewed energy spectra strongly dominate (Figure 6.4(c)). If a linear
fit is applied to the data, we find the following relation for the skewness γ3

γ3 ≈ (2.7±0.4)×Q[nC]− (0.18±0.06) , (6.3)

where Q denotes the peak charge given in nC.

In the following, we study PIC simulations and hereby identify this effect as a characteristic
property of beam loading in shock-injected LWFAs. To understand how the accelerated
electron bunch loads the wake and affects its energy spectrum, we have extensively
simulated the interaction process for a wide range of parameters. The analysis of this
theoretical data indeed explains the observed asymmetry. Two of these simulations are
depicted in Figure 6.6(a) and (b). As the electron bunch is injected into different phase
positions at nearly the same time, the electrons experience different accelerating fields due

105



6. Experimental Study of Beam Loading

-10 -5 0 5 10 15 20
Position [µm]

0
100
200
300
400

En
er

gy
[M

eV
]

-5 0 5 10 15 20 25
Position [µm]

0
100
200
300
400

En
er

gy
[M

eV
]

0 2 4 6 8 10 12 14
Charge Density [pC/MeV]

0
5

10
15
20

C
ur

re
nt

[k
A

]

−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75

E
z

[T
V

/m
]

0 2 4 6 8 10 12 14
Charge Density [pC/MeV]

0
5

10
15
20

C
ur

re
nt

[k
A

]

−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75

E
z

[T
V

/m
]

(b)(a)

Figure 6.6.: Simulated effects of strong and weak beam loading. The simulation parameters
are matched to the ATLAS-300 LWFA whereas the injected charge was adjusted by varying
the focus position as discussed in subsection 5.1.1. Into the background the simulated
electron density is imprinted as a gray watermark. A colored map of the electron phase
space is shown on top. The on-axis longitudinal field is plotted in green with dashed ocher
lines as the linear extrapolation of the undisturbed wakefield at the front of the cavity.
Deviations between these two lines show the influence of beam loading and indicate its
strength. The energy spectrum is plotted on the left (shaded red) and the respective current
on the bottom (shaded blue). In the low charge case (QPeak ≈ 55pC) (a) the electrons only
slightly disturb the accelerating fields. Hence, the phase space is linearly chirped and
the energy spectrum is symmetric. However, in the high charge case (QPeak ≈ 280pC) (b)
with strong beam loading, the nonlinearly chirped phase space causes a very asymmetric
energy spectrum.
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to the variation of the longitudinal field across the wakefield phase. This leads to a linear
positive chirp in phase space which maps the current profile congruently to the energy axis,
see Figure 6.6(a). In the high charge case, the self-fields of the electrons are large enough
to significantly reduce the accelerating fields. The chirp at the front of the bunch where
electrons of lower energy are located vanishes due to beam loading or even reverses when
the wake is overloaded (cf. Figure 6.6(b)). Being the projection of the phase space onto the
energy axis, the electron spectrum, therefore, exhibits a strong asymmetry with a peak at
lower energies. Hence, the skewed spectra we observe in the experiment are the signature
of beam loading causing a nonlinear phase space chirp. As beam loading effects become
more dominant with increasing current and hence with the number of injected particles,
we expect γ3 to increase with charge, which is indeed the case for experimental data (cf.
Figure 6.4(c)). Moreover, these simulations suggest that for a certain amount of injected
charge, beam loading effects become strong enough to flatten the effective accelerating
fields. This optimal beam loading regime leads to a minimal energetic bandwidth of the
accelerated electrons and has already been identified in the past by several groups ([44, 45,
49]). For the charges probed in Figure 6.2, such optimal beam loading is not observed. We
assume that scattering in the pointing lanex smears the signal on the espec lanex and by
that, spectra with minimal bandwidth cannot be observed. This effect becomes stronger
for smaller particle energies and hence counteracts the narrowing of energetic bandwidth
due to beam loading.

As plasma wakefields are scaling-invariant, our findings are not restricted to the very
specific experimental conditions presented in this context, but are valid for a much broader
set of parameters [195]. Provided the scaling conditions are fulfilled, the different LWFAs
behave similarly and corresponding beam loading effects like the skewed spectral shape
can be generalized to all kinds of LWFAs with localized injection mechanisms operating
under different experimental conditions. Indeed, our analysis can be extended to a different
shock front LWFA operating regime with densities almost an order of magnitude larger and
a few-cycle laser pulse as a driver1. Although the scaling requirements are not perfectly
met (the few-cycle laser also operates at a central wavelength of 800nm), the analysis
presented in [38] suggests that the scaling invariance also holds true for beam loading.

6.2. Beam Loading in Dual-Energy Electron Beams

In previous sections, we have presented the performance of the 75TW LWFA and high-
lighted its capability of delivering monochromatic electron beams via shock front injection.

1Further details on this LWFA are given in [48, 123]
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Figure 6.7.: Experimental setups for studying beam loading effects on dual-energy electron
bunches. Corresponding simulations depicting the acceleration process in the plasma
are shown as well. The (main) driving laser pulse is color-coded, whereas the electron
density is given as gray background. The accelerated particle bunches are highlighted
by the green ellipses. In (a) the second electron bunch is generated by shock injection
alone. Here, the LWFA is tuned to enable injection into the second cavity as well. Both
particle beams are located in different buckets of the wake and are inherently separated
by one plasma wavelength. In (b) the two separate particle bunches are created by two
independent injection events, namely shock injection followed by optical injection induced
by a counter-propagating laser pulse. Here, both particle beams are located in the leading
bucket of the wake.

We have investigated beam loading and how it affects the driving electron bunch. By
generating two longitudinally separated electron bunches, driver and witness of beam
loading effects can be decoupled. We hereby gain the possibility of directly probing the
fields by measuring the final energy of the witness bunch. In the following part, we will
show how dual-energy electron beams from one LWFA may be generated. We will discuss
how modifications to the experimental setup lead to additional injection into the second
plasma cavity or dual injection into the leading bucket of the wake. Both schemes allow
for the generation of dual-energy electron bunches and complement each other as they
allow for inter- and intra-cavity beam loading studies. The following sections are based on
Götzfried et al. [38] where these results were published initially. A schematic plot of both
experimental setups is given in Figure 6.7.

6.2.1. Dual Shock Injection

Up to now, we have studied how high charge electron beams modify their own accelerating
fields and hereby influence their own final energy spectrum. Nevertheless, these self-
fields are not restricted to their direct vicinity but also modify the wakefields in their trail.
Hence, beam loading not only affects the spectrum of the leading high charge bunch but
also the acceleration process of subsequent electron bunches. A method of generating
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Figure 6.8.: Two simulations differing by the amount of injected charge into the first
cavity. In (a), the initialized hydrogen gas density decreases from 1.6×3.0×1018cm−3

to 1.0×3.0×1018cm−3 over the range of one plasma wavelength (∼ 19 µm), whereas in
(b) the density gradient is almost twice as large and drops from 3.0×3.0×1018cm−3 to
1.0×3.0×1018cm−3. All other parameters are identical. With 322pC in (b) as opposed
to 231pC in (a), the injected charge in the first cavity in (b) is large enough to suppress
further injection into subsequent cavities. The shape of the laser pulse in each case is
displayed as contour lines in units of a0.

two longitudinally separated electron bunches grants the possibility to study far-reaching
energy-charge correlations between two distinct electron beams.

In order to inject electrons into subsequent wakefield cavities, one has to decrease the total
injected charge in the leading cavity. The space charge of these electrons increases the
injection threshold and hence suppresses further injection into subsequent buckets. As
discussed in previous sections, this can be achieved for example by lowering the height
of the density jump at the shock (cf. Figure 5.8) and/or reducing the laser intensity at the
position where injection happens (cf. Figure 5.5). In that way, the electrostatic potential in
the leading cavity can be reduced sufficiently to enable injection into subsequent buckets.
Two exemplary simulations with (a) and without (b) secondary injection are given in
Figure 6.8. Note that the two bunches in this setup are inherently longitudinally separated
by a distance of ∼ λp.

To experimentally realize the generation of dual-energy electron bunches with a single
laser pulse, we moved the wafer by ∼ 0.4mm out of the middle of the gas jet and closer to
the jet entrance. This reduces the height of the density jump but also changes the angle of
the shock front and increases its width (cf. [179]). The latter only plays a minor role, as has
been discussed above in subsection 5.1.2. Fine-tuning the hydrogen pressure applied to the
nozzle in combination with adjusting the longitudinal focal spot position eventually leads
to the generation of double-bunch electron beams. Figure 6.9 shows a dataset containing
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Figure 6.9.: Dual-energy electron bunches generated with a single laser pulse using shock
front injection. The plot shows 97 consecutive electron spectra where the experimental
parameters have been optimized to yield a second particle beam at lower energies via
injection into the second plasma period. A detailed analysis of this data set is given in the
main text.

97 consecutive shots1 where the accelerator operates in a regime favoring injection into
two successive cavities. Since the accelerating fields in the second cavity are lower, the
second electron bunch gains a factor of ∼ 1/3 less energy during the acceleration process
than the leading one.

As in previous cases, we again start our analysis of the data set by sorting the electron
beams according to their charge to reveal energy-charge correlations (cf. Figure 6.10(a-b)).
As expected, the energy of the leading beam again depends on its own charge. A linear fit
to the experimental data (cf. red dots in Figure 6.10(a)) discloses the correlation for the
leading electron bunch (denoted by E1|Q1 in the following)

E1 ≈ (259±3)MeV− (0.11±0.03)MeV×Q1[pC], (6.4)

which differs from Eq. (6.8) due to slightly different laser and target parameters (longitudi-
nal focus and wafer position).

The lower-energy bunch E2, however, shows no statistically significant dependence on
Q1 (cf. blue data in Figure 6.10(a)). However, we now observe beam loading effects

1Three shots in this run contained no data due to DAQ failure. These shots have been cut out.
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Figure 6.10.: Experimentally observed inter-cavity beam loading effects. The dual-energy
electron beams are generated by injection into subsequent wakefield cavities at a sharp
plasma density down ramp. The data are sorted either by the charge in the leading, high-
energy beam (denoted by Q1) (a) or by the charge in the trailing, low-energy beam (Q2) (b).
Linear fits and their respective 95% confidence intervals (shaded areas) are given in both
cases. The data not only show beam loading effects of the respective bunches on themselves
but also reveal a clear correlation between the energy of the leading bunch E1 and the
charge of the second bunch Q2 (red dots in (b)). The latter dependence experimentally
demonstrates beam loading effects between different wakefield buckets.

of the second bunch on itself, as we clearly find the correlation E2|Q2 (cf. blue data in
Figure 6.10(b)) approximated by

E2 ≈ (113±3)MeV− (0.18±0.06)MeV×Q2[pC]. (6.5)

Nevertheless, due to the mechanism employed to create these two separated electron
bunches, we also expect E1 to correlate with Q2. When fewer electrons are captured by the
first wakefield period, more electrons can be trapped in the second one due to the higher
remaining wakefield amplitude in the second bucket. A higher energy of the leading bunch
consequently correlates with a higher amount of injected charge in the second bucket (via
Eq. (6.4)). Indeed, we measure (cf. red data in Figure 6.10(b))

E1 ≈ (231±4)MeV+(0.28±0.07)MeV×Q2[pC]. (6.6)

The FBPIC simulations to verify our experimental results are shown in Figure 6.11. As
in the experimental data, the charge in the first electron bunch Q1 changes the slope of
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Figure 6.11.: Simulated inter-cavity beam loading effects on dual-energy electron beams
injected into two subsequent wakefield cavities. The data sets are again sorted either by
the charge in the leading (Q1) or trailing (Q2) electron bunch (a-b). Five different PIC
simulations explaining the experimentally observed inter-cavity beam loading effects are
shown in (c) where their respective phase space and on-axis longitudinal field are plotted.
Beams of different charges are injected into the first and second wakefield period by varying
the absolute longitudinal position of the focal laser spot zf from zf = zshock = 0.8mm to
zf = 1.6 mm, where zshock is the absolute position of the shock front. The experimentally
deduced effect of electron bunches influencing the acceleration process of an adjacent
wakefield cavity is reproduced. For high charges Q1 both the on-axis accelerating field Ez
(blue curve in (c)) and the amount of subsequently injected electrons are reduced (blue
crosses in (a)). Thus, this beam loading effect results in a higher charge Q2 for the second
particle bunch the higher E1 (red dots in (b)). Simulations provided by courtesy of A.
Döpp.
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6.2. Beam Loading in Dual-Energy Electron Beams

the accelerating field in the first bucket. The higher the charge, the more suppressed the
fields and hence the lower the final electron energy E1 (red dots in Figure 6.11(a)). The
correlation E1|Q1 is immediately established and identified as typical beam loading in a
LPA. A linear fit to the simulated data leads to

E1 ≈ (426±4)MeV− (0.55±0.03)MeV×Q1[pC]. (6.7)

Compared to Eq. (6.4) beam loading effects of the first bunch on itself are more pronounced
in the simulations which we trace back to higher simulated beam currents. Similar to the
experimental data, this effect does not extend to the electron bunch in the second wakefield
period. The field strengths and hence the energies E2 in the second bucket are uncorrelated
to the charge in the leading electron beam Q1 – as experimentally observed (blue data
points in Figure 6.11(a)). In fact, for all five different cases, the slope of the wakefield
in the second period appears to be almost independent of beam loading from the first
bunch and changes only due to beam loading of the second bunch on itself explaining the
correlation E2|Q2 (cf. Figure 6.11(c)). The simulations also help us to verify the E1|Q2

correlation found in Eq. (6.6). High charges in the leading wakefield cavity indeed suppress
injection into subsequent periods which results in a Q1|Q2 dependence [45] (cf. crosses in
Figure 6.11(a)). Together with the already established Q1|E1 correlation, the E1|Q2 effect
can be understood as their combination1.

6.2.2. Shock and Optical Injection

In the previously mentioned method of creating dual-energy beams, both particle bunches
are located in two different but subsequent wakefield cavities and are inherently separated
by ∼ λp. By introducing a second independent injection event, another way to generate
dual-energy electron beams can be realized. With the combination of shock and optical
injection, we gain the possibility to generate two particle bunches in the first wakefield
cavity as optical injection inherently only loads the first bucket and shock injection can
be confined to the first wakefield period as explained above. This method of combining
shock front and colliding pulse injection has only recently been established [51]. The
intra-cavity beam loading study presented in the following section hence complements the
above explained inter-cavity interaction process.

The setup to experimentally realize two independent injection events, i.e., to clip out and
focus a second counter-propagating laser beam into the perturbed gas jet has already been

1Note that the charge in the second bunch cannot have a direct influence on the energy of the first bunch as
this would require information to travel faster than the speed of light.
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Figure 6.12.: Combination of shock and colliding pulse injection. This data set shows 50
consecutive shots of dual-energy electron beams. The high-energy bunches stem from shock
injection, whereas the lower-energetic ones are optically injected. A detailed analysis of
this data set is given in the main text.

described above (cf. chapter 4). A corresponding sketch of the target setup is given in
Figure 6.7(b). The sharp density down ramp at the shock constitutes the first injection
event. The target and laser parameters (wafer and focal spot position) are fine-tuned to
generate a single accelerated particle bunch and shock injection into subsequent buckets –
as described in the previous section – is suppressed. Optical injection in the gas density
up ramp (before the shock) is inhibited due to increasing phase velocity. Hence, the
counter-propagating laser pulse is adjusted such that the second optical injection takes
place at the density plateau and happens after the injection induced by the shock front.
Both the sharp gas density down ramp and the collision with the counter-propagating
laser pulse lead to a mutually independent injection of electrons into the leading bucket of
the wake but at different positions along the propagation. As the optical injection occurs
later, the accelerating distance for this electron bunch is shorter and hence its energy is
lower1. This "driver-witness" configuration is ideally suited to study intra-cavity beam
loading effects since the second optically injected electron bunch ("witness") probes the
effective fields within the first wakefield period modified by the leading shock-injected
bunch ("driver"). In Figure 6.12 a data set of 50 angle-integrated consecutive electron
spectra is shown where this method of generating dual-energy electron beams has been
applied.

1This is easily verified during the experiment simply by blocking the counter-propagating laser pulse.
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Figure 6.13.: Experimentally observed intra-cavity beam loading effects. The dual-energy
electron beams are generated by a sharp density down ramp (shock injection) and a
counter-propagating laser pulse (optical injection). They are accelerated in the same
wakefield period. The data are sorted either by the charge in the leading, shock-injected
high-energy beam (denoted by Q1) (a) or by the charge in the trailing, optically-injected
low-energy beam (Q2) (b). Linear fits and their respective 95% confidence intervals
(shaded areas) are given in both cases. The data not only show beam loading effects of the
first bunch on itself but also discloses a clear correlation between the energy of the trailing
bunch E2 and the charge of the leading bunch Q1 (blue dots in (a)). This dependence
experimentally demonstrates beam loading effects between different bunches in the same
wakefield bucket.

In this data set, we again observe beam loading as the energy E1 of the first bunch depends
on its own charge Q1 according to

E1 ≈ (387±4)MeV− (1.3±0.1)MeV×Q1[pC]. (6.8)

This correlation is clearly visible when sorting the data set by the first bunch’s charge
(Figure 6.13(a), red dots). In contrast, the second bunch’s charge Q2 shows no statistically
significant correlation to the energy E1 of the leading bunch (Figure 6.13(b), red dots). This
is unexpected since high charges Q1 not only reduce the accelerating fields in the cavity
(E1 decreases) but also increase the threshold for further particle injection (Q2 decreases).
We therefore attribute this effect to the rather low statistics of our data set, especially as
PIC simulations hint at a Q2|E1 correlation (cf. Figure 6.14(b), red dots). However, the
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optically injected beam is clearly influenced by the leading one as E2 significantly depends
on Q1 (cf. Figure 6.13(a), blue dots)

E2 ≈ (175±5)MeV− (0.7±0.1)MeV×Q1[pC]. (6.9)

For high charges in Q1, the on-axis accelerating fields are suppressed due to beam loading
which leads to a lower peak energy E2 of the second electron beam experiencing these
fields. Surprisingly, we do not observe beam loading effects of the second bunch on itself
as delineated by Figure 6.13(b, blue) where the data is sorted by Q2. This circumstance
can be explained by the combination of already described effects. On the one hand, high
charges Q1 lower the accelerating fields in the cavity via beam loading (smaller E2) but
also increase the injection threshold, and hence Q2 is decreased. On the other hand, small
secondary charges Q2 lead to less beam loading of this bunch on itself (E2 increases). For
the combination of charges in our experiment, these two opposing effects cancel each
other, which is why a correlation E2|Q2 is not observed experimentally.

To gain better insight into the underlying physics, we have simulated the whole interaction
process. Based on our findings in subsection 5.1.1 the charge of the leading bunch was
adjusted by changing the longitudinal focus position zf in the range of zf = zshock = 0.8mm
to zf = 1.6mm in four equidistant steps, where zshock is the absolute position of the shock
and remains constant. In this way, the first bunch’s charge decreases whereas its energy
increases the larger zf gets (cf. section 5.1.1). The counter-propagating laser pulse was
initialized with a FWHM spot size of ∼ 18µm and a vacuum normalized vector potential
of a1 = 0.5. It collides on the gas density plateau with the main laser pulse at its focal
position zcollision = z2,f = 1.9mm > zf. The final charges and energies of both simulated
electron beams sorted by Q1 and Q2 are given in Figure 6.14(a) and (b). Simulated phase
spaces of both electron bunches in combination with the longitudinal electric fields Ez

are plotted in Figure 6.14(c). The phase spaces show a clear dependence on the scanned
focus position zf and the experimentally deduced E1|Q1 beam loading effect is clearly
reproduced by the simulations (Figure 6.14(a), red). For the simulated beam loading effect,
we deduce an identical relation to Eq. (6.7)

E1 ≈ (426±4)MeV− (0.55±0.03)MeV×Q1[pC]. (6.10)

Moreover, the simulated on-axis fields in Figure 6.14(c) show, that beam loading effects
induced by the first bunch also extend to the second bunch. A linear fit leads to

E2 ≈ (210±5)MeV− (0.46±0.03)MeV×Q1[pC] (6.11)
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Figure 6.14.: Simulated intra-cavity beam loading effects on dual-energy electron beams
injected into the same wakefield cavity. The data sets are again sorted either by the charge
in the leading (Q1) or trailing (Q2) electron bunch (a-b). Five different PIC simulations
explaining the experimentally observed intra-cavity beam loading effects are shown in (c)
where their respective phase space and on-axis longitudinal field are plotted. Beams of
different charges are injected into the first wakefield period by two independent injection
events. By varying the absolute longitudinal position of the main focal laser spot zf in
the range of zf = zshock = 0.8mm to zf = 1.6 mm, where zshock is the absolute position
of the shock front, the charge in the first electron bunch can be adjusted. A counter-
propagating laser pulse with a1 = 0.5 collides with the main pulse at an absolute position
of zcollison = z2,f = 1.9mm > zf . For high charges Q1 both the on-axis accelerating field Ez
(blue curve in (c)) and the amount of subsequently injected electrons are reduced (crosses
in (a)). The simulations not only show beam loading effects of the first bunch on itself but
also disclose a clear correlation between the charge of the shock-injected bunch Q1 and the
energy of the optically injected bunch E2. The experimentally deduced effects of electron
bunches influencing the acceleration process of the second bunch in the same cavity are
hereby reproduced and the correlation between E2 and Q1 is established. Simulations
provided by courtesy of A. Döpp.
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which is in fair agreement with the experimentally deduced correlation in Eq. (6.9). The
E2|Q1 correlation can therefore be explained by the different amount of beam loading the
second bunch witnesses for varying charges in the leading bunch (Figure 6.11(a), blue).
As opposed to the experimental data we indeed find the E1|Q2 dependence (Figure 6.14(b),
red) based on the fact, that the threshold for optical injection is modified by Ez and hence
by Q1 (cf. blue crosses in Figure 6.14(a)). In the simulations, the on-axis fields Ez at the
position of the optically injected bunch are clearly dominated by the electrostatic potential
of the shock-injected particle beam, i.e., the modification to Ez by the first beam is much
more significant than the beam loading effect of the second bunch on itself. This explains
the positive correlation E2|Q2 which we only observe in the simulations (cf. Figure 6.14(b),
blue) but not in the experimental data.

6.3. Conclusion

In this chapter, we have described experimentally and by simulations, how the charge
and the energy of a single electron bunch are correlated. The cause of this correlation
was identified as the beam loading effect. Experimental data suggest that beam loading
also leads to a specific asymmetric shape of the energy spectrum. By statistical measures,
these deviations from symmetry can be boiled down and parametrized by a single scalar
quantity – coined by the mathematical expression of "skewness". Taking PIC simulations
as a starting point, we have developed a thorough understanding of how the phase space of
accelerated electrons evolves under beam loading effects. The skewed spectra are indeed
identified as a signature of beam loading causing a nonlinear chirp in phase space. The
notion of skewness allows for simple quantification of the strength of beam loading effects
and may serve as a tool to distinguish between pure and beam-loaded but laser-dominated
LWFA [38]. In the second part of this chapter, two ways of generating dual-energy electron
bunches were presented. We extended our analysis of beam loading to these dual bunches.
Here we distinguished between inter-cavity and intra-cavity beam loading effects. In
the first case, both bunches are located in two separate but subsequent wakefield periods.
Via its space charge, the first electron bunch not only reduces its own final energy by
beam loading but also inhibits injection into the second wakefield bucket. This effect
was reproduced by simulations. An analogous effect is discovered for intra-cavity beam
loading, where both electron bunches sit in the same wakefield period. The modifications
to the accelerating field induced by the leading electron bunch extend to the trailing particle
beam and hereby reduce its energy gain. Beam loading effects hence not only extend
to trailing electron bunches in separate plasma cavities but also alter the acceleration
dynamics of a subsequent electron bunch in the same wakefield period.
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Chapter 7

Summary and Outlook

Within the scope of this work, a state-of-the-art LWFA has been presented producing high-
charge electron beams beyond 300pC peak charge with exceptionally low divergences
of less than 0.5mrad and a relative energy spread of ∼ 15% (FWHM), respectively
6.5% (RMS). The tailored gas density profile enables stable operation over a wide set of
parameter ranges. In contrast to many other injection schemes, hundreds of pC can be
loaded into the wakefield. With these results, the ATLAS-300 accelerator joins the rank of
only a handful of LWFAs being capable of delivering joule-class quasi-monochromatic
electron beams with less than 15% bandwidth (RMS) [33, 34, 49, 196, 197].

Nonetheless, for many applications of these joule-class electron beams in high-energy
physics, especially for the development of compact radiation sources [33], energy spreads
of 1% or even less are necessary. Andriyash et al. [198] for example propose an ultra-
compact coherent X-ray source based on betatron amplification in an optical lattice.
However, the stringent demand on the spectral bandwidth of less than 1% defies the
current experimental realization. The same demands currently hinder the development
of tabletop ultra-brilliant X-ray FELs. With spectral filters, the electrons’ bandwidth can
of course be reduced at the expense of the total charge throughput. With such a setup,
soft-X-ray undulator generation with laser-plasma-based electron beams has already been
shown by Fuchs et al. [5]. Here the bandwidth was reduced from ∼ 40% (FWHM) to 6%
(FWHM) by a magnetic lens doublet. Simulations with table-top LPA parameters suggest
that micro bunching in the undulator – a necessary effect to reach the high gain regime
– however requires an electrons’ energy spread below 1% (RMS) for beams of some pC
peak charge [4, 199–201]. Hence, with the unprecedented peak charge densities presented
in this thesis and even smaller band-pass filters, detectable FEL gain driven by compact
LPAs comes into reach.

Besides introducing energy filters to reduce the bandwidth, alternative ways to directly
generate even more monochromatic plasma-based beams may be pursued. Lehe et al. [129]
for example identified a new optical injection regime combining both high charge and low
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energy spread (∼ 100pC at a final bandwidth of ∼ 2%). The required laser parameters are
well met with current Ti:Sa laser technology and it remains to be seen if these expectations
defy experimental validation.

Another way to tackle electron beams of the lowest energy bandwidths uses beam loading
effects to flatten the longitudinal accelerating fields. The theoretical foundation for this
technique was developed by Tzoufras et al. [42] in 2008 (cf. chapter 1). In this work it
was shown, that trapezoidal beam currents with the appropriate total charge may flatten
the accelerating fields in a LWFA via beam loading (cf. subsection 2.7.3). However, to
access this intermediary regime between LWFA and PWFA, beam currents in the range of
tens of kA are necessary. As shown in the final theoretical chapter of this work, charges
around hundreds of pC are necessary in the case of the ATLAS-300 accelerator to enter the
optimal beam loading regime. These high demands are the reason why this intermediary
regime has only been scarcely studied yet.

The data presented in chapter 6 show that we reach this beam loading regime in the case
of highly-loaded quasi-monoenergetic wakefields. Here, we use single and dual-energy
electron bunches to probe the accelerating fields in the first and second wakefield cavity
(cf. section 6.2) and assess their dependence on the accelerated charge. The first hints
for such inter-cavity beam loading effects were discovered by Rechatin et al. [44] who
extended their analysis also to the ’dark current’ of the accelerator. This background charge
originates in the injection of electrons into trailing buckets of the wakefield. The dark
current they measure decreases the higher the trapped charge in the first bucket. This
observation is in agreement with our measurements (cf. section 6.2) – even though they are
dealing with lower peak charges in the range of 1pC to 40pC. Based on our studies with
dual-energy electron bunches, we find that beam loading effects extend to trailing electron
bunches in the same and also subsequent plasma cavity. Fine-tuning the injected charge
(with methods shown in chapter 5) bears the potential of reducing the effective fields such
that they become flat (cf. Figure 6.6(b)). Instead of probing the fields, a subsequently
injected electron bunch may thus be used as "witness" experiencing the fields flattened by
a preceding "escort" bunch [38]. Proof-of-principle studies conducted by Manahan et al.
[202] showed that by this mechanism the energy spread of the witness can be reduced by
an order of magnitude. In this way, beam loading can be utilized to minimize the bunch’s
energy spread and offers the possibility for future experiments to tailor electron beams of
extremely small emittance, needed for example to seed next-generation FELs [4, 203].

To take advantage of such beam loading effects in future experiments, a thorough under-
standing of the underlying physics is mandatory. Supported by extensive PIC simulations,
beam loading effects are comprehended in our work much more fundamentally and are
recognized as the development of a nonlinear chirp in the evolving phase space. This chirp
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expresses itself in a skewed energy spectrum which is indeed observed in experimental
data. The effect of smaller energy spread is a direct consequence of this behavior. Hence,
this work delivers a fundamental picture of beam loading as a critical phenomenon in
plasma acceleration and constitutes another step towards compact high-brightness electron
beam sources for quality-demanding applications [4].

Besides the capability to significantly reduce the energy spread, these beam loading studies
open up the way to examine wakefields generated by the self-fields of electron beams [204].
In such PWFAs stages, injection schemes can be employed which are expected to provide
electron bunches of superior beam quality in terms of energy spread and normalized
emittance [205]. Furthermore, this type of accelerators are not limited by dephasing
inherent to pure LWFAs (cf. subsection 2.6.7). Indeed, Blumenfeld et al. [206] showed
potentially very high acceleration fields of PWFAs by doubling the energy of parts of a
conventionally accelerated 42GeV electron bunch in a 85cm long PWFA stage.

With the generation of a driver-witness electron bunch pair by the methods described
in section 6.2, the advantages unique to both LWFA and PWFA can be combined and
might culminate in the development of a new accelerator type. In so-called hybrid plasma
accelerators, ultra-cold electron beams may be generated by the interaction between two
locally separated electron bunches as studied in this work. A first LWFA stage acts as
compact source for high-brightness electron beams. These particle bunches excite their
own trailing plasma density wave in a subsequent PWFA stage located some mm to cm
behind the first LWFA target. In common LWFA scenarios, the electrons’ beta function
– the equivalent to the Rayleigh length zR for optical beams[39] – is typically an order
of magnitude larger than the laser’s zR. Hence, due to laser diffraction, the self-fields
of the driving bunch causing beam loading in the first LWFA stage take over as the
dominant driving force in the second plasma target realizing the PWFA stage [39]. The
dephasing-free second stage offers new possibilities to boost the particles’ energies [207,
208] and enables novel ultra-cold PWFA injection schemes appropriate to generate ultra-
low-emittance particle beams [205, 209–211]. Moreover, hybrid compact accelerators
comprise an ideal platform for studying PWFA physics complementary to large-scale
RF-based PWFA facilities [212]

In order to develop such hybrid accelerators, the interplay between laser- and particle-
driven wakes needs to be well understood and utilized to generate particle beams of suitable
properties. The beam loading studies in this thesis contribute to this understanding for
sub-nanocoulomb particle beams and by that support the development of this novel type of
particle accelerators.
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In future experiments, these beam loading studies will be extended to joule-class LPAs in
the newly built Centre for Advanced Laser Applications (CALA) housing the upgraded
version of the ATLAS-300 laser now being capable of delivering ∼ 2PW on target1.
Ultimately, these beam loading studies may pave the way to lowest bandwidth GeV
electron beams and by that culminate in the development of laboratory-scale ultra-brilliant
X-ray sources with potentially high impact on material characterization and medical
imaging applications [3, 213, 214].

1First LWFA results with the ATLAS-3000 laser system in CALA with a pulse power of 300TW on target
are presented in [38].
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Appendix A

Theoretical details and in-depth derivations

This part of the appendix provides supplementary material to the theory chapter. In
particular, in-depth mathematical derivations too technical for the main theory chapter
are given. Nevertheless, the following sections contain results crucial for the stringent
mathematical derivations in chapter 2 and thus complete the theory part where references
to the corresponding sections in this appendix are given. The following derivations are
based upon [57–59, 63].

A.1. Poynting Vector

Starting from Poynting’s theorem, two basic quantities of electrodynamics - the Poynting
vector S and the energy density u - will be derived in the following.

Poynting’s theorem is a direct consequence of the conservation of energy extended to
electromagnetic fields. It states that the decrease in the electromagnetic energy per unit
volume equals the energy flow out of this volume ∇ ·S plus the work done by the fields on
a charged object j ·E

− ∂ u
∂ t

= ∇ ·S+j ·E. (Poynting’s theorem) (A.1)

Multiplying Eq. (2.4) with E and making use of the identity

∇(B×E) =E (∇×B)−B (∇×E) (A.2)

leads to

E ·j = ε0c2
∇ · (B×E)+ ε0c2B · (∇×E)− ∂

∂ t

(
1
2

ε0E ·E
)
. (A.3)
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With Eq. (2.2) and reversing the cross product, we get

E ·j =−∇

(
ε0c2E×B

)
− ∂

∂ t

(
1
2

ε0c2B ·B+
1
2

ε0E ·E
)
. (A.4)

Therefore, we have

S := ε0c2E×B, (A.5)

u :=
1
2

ε0c2B ·B+
1
2

ε0E ·E. (A.6)

The intensity I of an electromagnetic wave is given by the cycle averaged Poynting vector
S and can be expressed via Eq. (2.17) and Eq. (2.18) as

I :=
〈
|S|
〉
= ε0c〈E2〉 . (A.7)

A.2. Relativistic Equation of Motion

In this section, the motion of a relativistic electron interacting with a linearly polarized
plane wave will be derived. Plots of this trajectory in the laboratory and co-moving frame
can be found in the main part of this work in subsection 2.2.2.

In contrast to the classical treatment in subsection 2.2.1, both terms the electric and the
magnetic field contribute significantly to the Lorentz force in the relativistic case. Hence,
the electron’s momentum is given by

dp
dt

=
d
dt

(γmev) = FL =−e(E+v×B) (A.8)

with

γ :=
1√

1− v2

c2

=

√
1+
(
p

mec

)2

(A.9)

being the relativistic Lorentz factor.

Noting that

1
2

dp2

dt
= p

dp
dt

=−ep ·E− ep · (v×B) =−ep ·E, (A.10)
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A.2. Relativistic Equation of Motion

where we have used p · (v×B) = 0, we can calculate

dγ

dt
=

d
dt

√
1+
(
p

mec

)2

=
1

2γ (mec)2 2p
dp
dt

=
1

2γ (mec)2
dp2

dt
=− e

mec2v ·E. (A.11)

The kinetic energy of the electron directly follows as

dEkin

dt
=

d
(
(γ−1)mec2

)
dt

= mec2 dγ

dt
=−ev ·E. (A.12)

Applying the identities

dA
dt

=
∂A

∂ t
+(v ·∇)A, (A.13)

v× (∇×A) = ∇A (v ·A)− (v ·∇)A, (A.14)

– where ∇A means, that the nabla-operator only acts on theA-component – to Eq. (2.7),

we get

E =− ∂A

∂ t
=− dA

dt
+(v ·∇)A (A.15)

and

v×B = v× (∇×A) = ∇A (v ·A)− (v ·∇)A. (A.16)

Inserting into Eq. (2.20) leads to

dp
dt

=−e
(
− dA

dt
+(v ·∇)A+∇A (v ·A)− (v ·∇)A

)
= e

dA
dt
− e∇A (v ·A) .

(A.17)

Let us again consider a plane linearly polarized electromagnetic wave traveling in x-
direction via A =A⊥ = eyA0 sin(φ̃), with ev being the unit vector in v-direction and
φ = k ·r−ωt+ φ̃ = kx−ωt+ φ̃ . φ̃ is a constant phase offset and can be set to zero. Hence,
according to Eq. (2.7) and Eq. (2.6), we have E = eyEmax cos(φ) andB = ezB0 cos(φ).
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A. Theoretical details and in-depth derivations

Now, we split the momentum from Eq. (A.17) into components transverse and longitudinal
to the plane wave

p= p⊥ +p‖ (A.18)

and solve Eq. (A.17) for the transversal component p⊥.

A only depends on the longitudinal component and is uniform in the transverse direction,
therefore 0 = ∇A (v ·A⊥) = ∇A (v ·A) and hence

dp⊥
dt

= e
dA
dt

. (A.19)

Integration of the last equation with the boundary condition, that the electron is initially at

rest
(
p|

φ=0
!
= 0
)

, leads to

p⊥ = eA. (A.20)

In the case of a plane wave, it is p⊥ = py = eA0 sin(φ) =: eA. Eq. (A.11) then simplifies to

dγ

dt
=−eEmax

mec2 vy cos(φ) (A.21)

and the relativistic equation of motion becomes

dp
dt

=−e
(
eyEmax +v×ezB0

)
cos(φ) =−e


 0

Emax

0

+

 vyB0

−vxB0

0


cos(θ)

=−eEmax

 vy/c
1− vx/c

0

cos(φ). (A.22)

Comparing the longitudinal x-component of the momentum to Eq. (A.21) leads to

dpx

dt
=−eEmax

c
vy cos(φ) =−mec

e
mec2vE = mec

dγ

dt
. (A.23)
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A.2. Relativistic Equation of Motion

Integration of both sides with respect to the formerly mentioned boundary condition(
p(φ = 0) !

= 0→ γ(φ = 0) = 1
)

leads to

px = mec(γ−1) . (A.24)

Since pz = 0 for all times t (cf. Eq. (A.17)), we may simplify p2 = p2
x + p2

y . Therefore, by
inserting Eq. (A.24) into Eq. (2.29) and making use of the definition given in Eq. (2.23)
we get

(px +mec)2 = γ
2 (mec)2 = (mec)2

(
1+

p2
x + p2

y

(mec)2

)
= (mec)2 + p2

x + p2
y

⇒ 2pxmec = p2
y

⇒ px =
1
2

p2
y

mec
=

e2A2

m2
ec2

mec
2

= a2 mec
2

. (A.25)

In the highly relativistic case (γ � 1) the forward momentum py dominates, whereas in
the classical regime (γ � 1) the transverse momentum px determines the motion of the
electron.

From Eq. (A.24) and Eq. (A.25) we get for a linearly polarized plane wave

py = (mec)
√

2(γ−1), (A.26)

γ = 1+
px

mec
= 1+

a2

2
. (A.27)

The propagation angle θ of the accelerated charge with respect to the traveling direction of
the plane wave is given by

tan(θ) =
py

px
=

mec
√

2(γ−1)
mec(γ−1)

=

√
2

γ−1
. (A.28)

With Eq. (A.27) and Eq. (A.25) the kinetic energy in Eq. (A.12) becomes

Ekin = (γ−1)mec2 = cpx =
a2

2
mec2. (A.29)

Eq. (A.19) and Eq. (A.29) can also be obtained directly from Noether’s theorem [215].
The twofold symmetry (invariance under translation and invariance under t → t−x/c)
of the incident plane wave corresponds to two conservation laws of the electron motion:
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A. Theoretical details and in-depth derivations

The transverse canonical momentum p⊥− eA as well as E− cpx are conserved over time.
Integration regarding the boundary conditions yields Eq. (A.19) and Eq. (A.29).

To summarize, the following equations derived above completely describe the electron
motion driven by a plane wave

px =
a2

2
mec,

py = eA = amec,

pz = 0.

In accordance with Eq. (2.24) it therefore makes sense to define normalized momenta p̃
via p̃ = p/(mec) to simplify these equations to

p̃x =
a2

2
, (A.30)

p̃y = a, (A.31)

p̃z = 0. (A.32)

The electron trajectory can easily be calculated by integrating these equations after trans-
forming the parameter t→ τ ′ = t− x/c⇒ φ →−ωτ ′.

RememberingA= eyA0 sin(φ)⇒ a= eya0 sin(φ)→ a(τ ′) =−eya0 sin(ωτ ′) and using

γ
d
dt

= γ
dτ ′

dt
d

dτ ′
= (γ− p̃x)

d
dτ ′

=
d

dτ ′
, (A.33)

the above equations transform to

px = γme
dx
dt

=
a2

2
mec ⇒ dx

dτ ′
= γ

dx
dt

=
a2

2
c, (A.34)

py = γme
dy
dt

= amec ⇒ dy
dτ

= γ
dy
dt

= ac, (A.35)

pz = 0 ⇒ dz
dτ ′

= 0. (A.36)
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A.3. Ponderomotive Force Derivation

Therefore, we get (with x(τ ′ = 0) !
= 0, y(τ ′ = 0) !

= 0, z(τ ′ = 0) !
= 0)

x(τ ′) =
c
4

a2
0

(
τ
′− 1

2ω
sin(2ωτ

′)

)
, (A.37)

y(τ ′) =
c
ω

a0
(
1− cos(ωτ

′)
)
, (A.38)

z(τ ′) = 0. (A.39)

The trajectory of the electron is composed of transverse oscillation with the laser frequency
and a longitudinal oscillation with double the frequency superimposed by a drift motion
vdrift

vdrift =

〈
dx(τ ′)

dt

〉
=

ca2
0

4

〈
1
γ

〉
=

ca2
0

4+a2
0
. (A.40)

Subtracting the longitudinal drift from the above equations, the quivering motion of the
electron in the drift frame

(
x′, y′

)
can be extracted

kx′ =
a2

0
8

sin(2ωτ
′), (A.41)

ky′ = a0 cos(ωτ
′). (A.42)

The frequency difference between the two components leads to the typical figure-8 motion
(cf. Figure 2.1). Whereas the x-component scales with ∼ a2

0, the y-component depends
linearly on a0. Therefore, the trajectory gets stretched in the longitudinal direction the
higher the normalized vector potential.

A.3. Ponderomotive Force Derivation

The ponderomotive force is the cycle-averaged Lorentz force which charged particles
experience in an inhomogeneous electromagnetic field. An expression of its first order will
be derived in the following by a perturbative ansatz.

Starting from the equation of motion given by Eq. (2.20) we decompose the electric field
into a spatial and a temporal component

E(x,t) = Ẽ(x)cos(ωt). (A.43)
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A. Theoretical details and in-depth derivations

For convenience, the following indices denote the order of the appearing terms.

Taylor expansion leads to

Ẽ(x) = Ẽ1(x)+ Ẽ2(x)+ · · ·= Ẽ(x0)+(∆x1 ·∇) · Ẽ(x0)+ · · · . (A.44)

To the lowest order, the equation of motion Eq. (2.20) reads

me
dv1

dt
=−eE1(x,t) =−eẼ1(x)cos(ωt) =−eẼ(x0)cos(ωt). (A.45)

This differential equation is solved by

v1 =− e
meω

Ẽ(x0)sin(ωt), (A.46)

∆x1 =
e

meω2 Ẽ(x0)cos(ωt). (A.47)

To the lowest (first) order, only the E-field accounts for the electron motion. Note, that the
average over this motion in the lowest order vanishes.

Considering the non-linear part of the equation of motion (second order terms) and Taylor
expanding the electric fields leads to

me
dv2
dt

=−e
(
E2(x,t)+v1×B1(x,t)

)
. (A.48)

The first order magnetic fieldB1 can be found by integrating Eq. (2.2), which leads to

B1 (x,t) =−
1
ω

∇×E1 (x,t) =−
1
ω

∇× Ẽ (x0)sin(ωt) . (A.49)

Inserting Eq. (A.46) and Eq. (A.47) into the non-linear part of the equation of motion, i.e.,
into Eq. (A.48), we get

me
dv2
dt

=−e
(
(∆x1 ·∇) ·E(x0,t)+v1×B1(x,t)

)
=− e2

meω2

(
cos2(ωt)

(
Ẽ(x0) ·∇

)
· Ẽ(x0)+ sin2 (ωt)Ẽ(x0) ·

(
∇× Ẽ(x0)

))
.

(A.50)
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A.3. Ponderomotive Force Derivation

Averaging over the fast oscillations of the carrier, this expression simplifies to

FPond = me

〈
dv
dt

〉
= me

d 〈v2〉
dt

=− e2

2meω2

((
Ẽ(x0) ·∇

)
· Ẽ(x0)+ Ẽ(x0)×

(
∇× Ẽ(x0)

))
, (A.51)

since 〈sin2(ωt)〉= 〈cos2(ωt)〉= 1/2.

Making use of the already above-introduced vector calculus identity (cf. Eq. (A.14)), the
last part can be rewritten as

E× (∇×E) =
1
2

∇(E ·E)− (E ·∇)E. (A.52)

Therefore, the ponderomotive force – to first order – becomes

FPond =−
e2

4meω2 ∇Ẽ2 =−mec2

4
∇ã2 =− e2

2meω2ε0c
∇I. (A.53)

Since the ponderomotive force is conservative, a potential φPond fulfilling FPond =−∇φPond

can be found

φPond =
e2

4meω2 Ẽ
2. (A.54)

The ponderomotive potential equals the mean kinetic energy of the electrons, since with
Eq. (A.46)

〈Ekin〉=
1
2

me 〈v2〉= 1
2

me
e2

m2
eω2 Ẽ

2 1
2
=

e2

4meω2 Ẽ
2 = φPond. (A.55)

The pressure p exerted by the electric field onto the surrounding gas can be calculated via
the force density f as

−∇p = f =
dF
dV

= FPond
dN
dV

= neFPond

⇒ p =
nee2

2mecε0ω2 I.
(A.56)

For typical parameters of I = 7×1018 Wcm−2, ne = 3.0×1018 cm−3, λ = 800nm the
exerted ponderomotive pressure is ∼ 2.0×106 bar.
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A.4. Debye Length and Shielded Coulomb Potential

In the following, we will derive the typical distance at which the electric potential is
significantly suppressed in ideal plasmas, the so-called Debye length. Moreover, the
screened Coulomb potential will be examined quantitatively.

Assume a test particle with charge q = −e at the origin of the coordinate system in a
hydrogen plasma Zi = 1. Introducing the electric potential φ via ∇φ =−E and exploiting
the radial symmetry, we have to solve the Poisson equation emerging from Eq. (2.1) in
spherical coordinates

∇
2
φ(r) =

1
r2

d
dr

(
r2 dφ(r)

dr

)
=−ρ(r)

ε0
. (A.57)

The charge density on the right-hand side is composed of the test charge represented by
the δ -function and the plasma background

ρ(r) = qδ (r)− e(ne(r)−ni(r)). (A.58)

The density distribution of each particle species depends on the potential energy and
– provided that both species are in thermal equilibrium1 – is given by the Boltzmann
distribution

n(r) = n0 exp
(
−qφ(r)

kBT

)
, (A.59)

where kB denotes the Boltzmann constant and T stands for the thermodynamic temperature.

Using the plasma approximation ne ≈ ni ≈: n and exploiting the fact that the kinetic energy
is much larger than the potential energy (eφ � kBT ), we can write

ne(r)−ni(r) =n0

(
exp
(

eφ(r)
kBT

)
− exp

(
−eφ(r)

kBT

))

≈n0

(
1+

eφ(r)
kBT

−1+
eφ(r)
kBT

)
= 2n0

eφ(r)
kBT

. (A.60)

1In thermal equilibrium the kinetic energy between the different components (Te stands for the temperature
of the electrons, Ti for the ion temperature) of the plasma equalizes through collisions and therefore
T := Ti = Te.
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For r 6= 0 the Poisson equation Eq. (A.57) becomes

∇
2
φ(r) =

2n0e2

ε0kBT
φ(r). (A.61)

Defining

λD :=

√
ε0kBT
n0e2 (A.62)

we therefore get for r 6= 0

1
r2

d
dr

(
r2 dφ(r)

dr

)
= 2λ

−2
D φ(r). (A.63)

The solution to this differential equation with the boundary conditions φ(r)−−−→
r→∞

0 and

φ(r)−−→
r→0

−e/(4πε0r) is given by

φ(r) =− e
4πε0r

exp

(
−
√

2r
λD

)
(A.64)

and is composed of the typical 1/r Coulomb potential multiplied by an exponential
shielding term, which depresses the potential much faster for large radii than the vacuum
term1. The parameter λD is called Debye length. For r � λD the shielding term is
negligible, and we get the normal Coulomb potential. For r� λD the potential drops
exponentially and hence the test charge is shielded at distances greater than the Debye
length.

1If we assume a constant ion background ni(r) = n0, justified by the larger response time of the ions to
external perturbations due to their much higher mass, we retrieve the Debye-Hückel potential

φ(r) =−e/(4πε0r)exp
(
−r/λD

)
in the very same way.
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Appendix B

Set Up and Analysis of FBPIC Simulations

This part of the appendix covers technical details of FBPIC simulations and elaborates
on the parameters and physical quantities chosen for the input file. An exemplary python
input file adapted to our experimental conditions is given at the very end of this chapter.

B.1. Technical Details on Simulation Parameters

In order to accurately model the laser-plasma interaction and extract decent estimates for
accelerated charges and energies, all relevant structures for the underlying physical process
must be resolved in these simulations. In FBPIC, the parameters to adjust are

1. the longitudinal and radial size of the simulation box given by zmin, zmax and rmax

(the respective variables in the input file are called zmin, zmax, rmax)

2. the number of grid points along the radial r and longitudinal dimension z denoted by
Nr and Nz (Nr, Nz)

3. the simulation time step δ t (dt)

4. the number of modes used Nm (Nm)

5. the number of macroparticles per cell along each dimension z, r and θ denoted by
pnz, pnr and pnt (p_nz, p_nr, p_nt)

These parameters are chosen as follows

1. the simulation box size must contain all physical relevant structures. In the lon-
gitudinal direction, this is the laser pulse and at least one plasma wavelength of
gas behind the laser pulse. The radial size must be chosen large enough such that
numerical back reflections of the laser from the radial boundary do not interfere
with the acceleration process (this is a typical problem in PIC simulations and even
happens for absorbing boundary conditions). A typical value for propagation lengths



B. Set Up and Analysis of FBPIC Simulations

of some mm is rmax ≈ 3wmax, where wmax is the largest radial size of the laser pulse
during the simulation (typically, the laser pulse is focused into the plasma, hence,
the pulse radius is maximum at the very beginning of the simulation).

2. The longitudinal and radial resolution must be chosen fine enough to resolve all
physically meaningful length scales. In the longitudinal direction, this is the laser
wavelength, whereas in the transverse direction we only need to resolve the plasma
dynamics which takes place on the scale of the plasma wavelength. The Nyquist
criterion sets lower limits for the resolution in both directions [216]. Since the
parameters Nz and Nr crucially influence the numerical cost of PIC simulations,
an extensive study on these two parameters has been performed in the course of
this work. Both parameters have been scanned independently whilst keeping the
remaining quantities unchanged. It was found that longitudinal resolutions δ z higher
than

δ z < λ/30 (B.1)

do neither significantly change the accelerated charge nor the energy gain (the
respective change is less than 1%). For the transverse dimension, we find that charge
and energy change by less than ∼ 1% for resolutions δ r finer than1

δ r < λp/120. (B.2)

To keep the numerical cost as low as possible (the Fourier transform scales as
Nz log(Nz), the Hankel transform as N2

r ), we have therefore chosen in all the
simulations presented in the scope of this thesis Nz ≈ (zmax− zmin)/(λ/30) and
Nr ≈ rmax/(λp/120). Typically we’ve set zmax = 0, zmin = −70×10−6 m, rmax =

80×10−6 m. With λ ≈ 800nm and λp ≈ 19µm, Eq. (B.1) and Eq. (B.2) correspond
to Nz ≈ 2500 and Nr ≈ 500.

3. Due to solving the fields in spectral coordinates, FBPIC is free of numerical disper-
sion. Hence, the time step δ t can be chosen freely without taking the Courant limit
into account. In practice, it is common to choose δ t = δ z/c.

4. As mentioned in the main part, FBPIC exploits the quasi radial symmetry of LPA
scenarios. Higher-order azimuthal modes (m ≥ 1) cover the deviations from rota-
tional symmetry by representing fields proportional to cos(mθ) and sin(mθ) [143].
The number of higher-order modes to consider depends on the physical conditions

1Parameter studies for the OSIRIS code show that the error based on inadequate resolution becomes small
and the wakefields converge for roughly the same resolution [217, 218].
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of the respective simulation and their degree of asymmetry. The initialization of a
linearly polarized laser pulse for example demands m≥ 1 and hence Nm ≥ 2 [152].
It must be made sure that the number of modes is sufficient to resolve the involved
physics. In typical LWFA two modes are enough, whereas non-linear effects like
self-injection may require three modes [143]. In our studies, no significant differ-
ence for shock-injected LWFA simulations with varying Nm ≥ 2 was found. Since
the computational costs of course increase with Nm, we have set Nm = 2 for our
simulations.

5. As the particle pusher has to act on each macroparticle separately, in many sim-
ulations, this step is the most time-consuming one. Hence, on the one hand, it is
favorable to keep the total number of macroparticles as low as possible. On the other
hand, especially for simulations where injection happens locally, the sampling rate
in each dimension must be high enough to obtain a precise modeling of the total
accelerated charge. To unite both requirements, we have identified the parts of the
simulation where injection happens and increased the macroparticle density locally
for these specific areas. To implement this adaptive macroparticle sampling, several
shock-injected LWFA simulations were analyzed and the initial spatial coordinates
of the finally injected and accelerated electrons were retraced. An example of such a
simulation, where the initial coordinates of the accelerated particles are identified, is
given in Figure 2.12. Basically, all electrons ending up in the accelerating fields of
the bubble stem from the plasma surrounding the gas density down ramp extended
to a radial extension of ∼ w, where w is the actual radial size of the driving laser
pulse. It is therefore sufficient to sample only the plasma around the shock very
finely to gain a decent modeling of the accelerated charge. We have therefore split
the total plasma volume into five separate regions with different sampling rates
(cf. Figure B.1). The outer regions I, II, and III do not provide any electrons to
accelerate and were therefore only sampled with four particles per cell. The plasma
around the shock (region IV and V) where injection happens was sampled with 64
macroparticles per cell1.

All the simulations conducted in the scope of this work were set up and run on an NVIDIA
Tesla V100 GPU. To guarantee comparability between the various simulations, the under-
lying FBPIC code remained unchanged and was not upgraded from version 0.9.4. With
this setup, a full quasi-3D LWFA simulation can be performed on the order of a few hours.
Newer versions of the code support advanced techniques like boosted-frame simulations,

1The distinction between region IV and V is obsolete. It was implemented to offer the opportunity of an
even higher sampling of the central region V of the laser plasma interaction which turned out to be not
necessary.
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Figure B.1.: Adaptive macroparticle sampling. Varying sampling rates were applied to
different regions of the plasma depending on their respective significance to the accelera-
tion process. Only the regions IV and V significantly deliver electrons that are injected
and eventually accelerated. To keep the numerical cost of such simulations low while
maintaining a decent modeling for the accelerated charge, it is beneficial to reduce the
sampling rate of the outer regions I, II, and III.

where all parameters are converted from the laboratory frame to a numerical more favorable
Lorentz frame [219, 220]. This allows for the speed-up of at least one order of magnitude
for such simulations.

B.2. Physical Parameters

As mentioned in the main text, the physical parameters appearing in the input file have been
measured and accordingly adopted to tailor these simulations to our experimental data.
These quantities characterize the laser pulse as well as the plasma density and profile. To
do so, the laser pulses have been fully characterized by frequency-resolved optical gating
(FROG). The pulse energy on target was calculated by determining the pulse energy before
compression and measuring the transmission through the optical compressor and beamline
(∼ 35%). The focal width of the laser spot was determined by an infinity-corrected
microscope objective whose magnification was calibrated to a well-known diffraction
pattern (cf- chapter 4). The laser pulse was initialized with a Gaussian profile defined by
these measured parameters [143].
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Table B.1.: Overview of the laser parameters used for simulations in this work. Some
parameters still need to be converted to fit the needs of FBPIC, e.g., FWHM to RMS. The
relative focal spot position zf ,rel is defined as zf ,rel := zf − zshock, where zshock denotes the
location of the shock front and zf stands for the absolute longitudinal position of the focal
spot.

Parameter Value

Laser power P [TW] 0 to 250
Laser FWHM duration τ [fs] 30
Focal waist radius w0 [µm] 17
Relative focal spot position zf,rel [mm] −1 to 1

The adopted gas density profile itself was measured interferometrically [177, 221] and
crosschecked by measuring the plasma wavelength (cf. subsection 4.2.1). The retrieved
plasma density profile which accordingly was entered into the simulations is plotted in
Figure 4.7(b). Nevertheless, the width of the shock is too small to be resolved, therefore,
we have chosen a reasonable transition length of λp. Simulations suggest that this quantity
is of minor importance for the injection and acceleration process (cf. subsection 5.1.2).
The exact longitudinal position of the focal spot zf cannot be determined experimentally,
as it critically depends on the interaction between laser and plasma (cf. subsection 2.5.2).
Hence, we have extensively studied the influence of this quantity and the effects of possible
shot-to-shot jittering by scanning this simulation parameter over a wide range around the
position of the shock (cf. section 5.1). If not stated otherwise, the absolute focal spot
position zf in the simulations was set to the beginning of the density down ramp (zshock),
hence zf,rel := zf− zshock = 0.

B.3. Analysis of PIC Simulations

The developers of FBPIC offer a wide set of routines and predefined functions to analyze
the generated HDF5 data. An additionally offered package called openPMD-viewer [222]
contains a set of tools to load and visualize these data. These visualization tools are very
handy to quickly assess the quality of the respective simulation, but cannot replace a
thorough analysis. The analysis of the simulated data in the scope of this work was done
in Python. Details on where to find all these macros, scripts, and notebooks may be found
at the very end of this thesis.
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B.4. Complete FBPIC Input Deck

Example for a complete FBPIC input file simulating a LWFA scenario with ATLAS-300
parameters. Short explanations of the respective parameters are given as comments in the
Python code.
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# −−−−−−−
# I m p o r t s
# −−−−−−−
import numpy as np
from s c i p y . c o n s t a n t s import c , e , m_e , m_p
from f b p i c . main import S i m u l a t i o n
from f b p i c . l p a _ u t i l s . l a s e r import a d d _ l a s e r
from f b p i c . openpmd_diag import F i e l d D i a g n o s t i c , P a r t i c l e D i a g n o s t i c , \
s e t _ p e r i o d i c _ c h e c k p o i n t , r e s t a r t _ f r o m _ c h e c k p o i n t
import s c i p y
import s c i p y . i o a s s i o
import s c i p y . c o n s t a n t s a s c o n s t
import s c i p y . i n t e r p o l a t e a s i n t e r p o l a t e

# −−−−−−−
# B a s i c f u n c t i o n s and p a r a m e t e r s
# −−−−−−−
def lambda_p ( n_e ) : # plasma w a v e l e n g t h
re turn (2* np . p i * c o n s t . c *np . s q r t ( c o n s t . m_e * \
c o n s t . e p s i l o n _ 0 / ( c o n s t . e **2* n_e ) ) )
def k_p ( n_e ) : #wave number
re turn ( 1 . / ( c o n s t . c *np . s q r t ( c o n s t . m_e * \
c o n s t . e p s i l o n _ 0 / ( c o n s t . e **2* n_e ) ) ) )
def n _ e l e c ( lambda_p ) : # plasma d e n s i t y
re turn ( ( 2 * np . p i * c o n s t . c / lambda_p ) * * 2 * \
( c o n s t . m_e* c o n s t . e p s i l o n _ 0 / ( c o n s t . e * * 2 ) ) )
n_c = n _ e l e c ( 0 . 8 e −6) # c r i t i c a l d e n s i t y
r _ e = c o n s t . e * * 2 / ( 4 * np . p i * c o n s t . e p s i l o n _ 0 * \
c o n s t . m_e* c o n s t . c **2) # c l a s s i c a l e l e c t r o n r a d i u s
def P_c ( n_e ) : # c r i t i c a l power
re turn (2* c o n s t . m_e* c o n s t . c **3* n_c / ( r _ e * n_e ) )
def matched_a0 ( P , n_e ) : # matched l a s e r s t r e n g t h parame te r
re turn ( 2 * ( P / P_c ( n_e ) ) * * ( 1 . / 3 ) )
def m a t c h e d _ w a i s t ( P , n_e ) : # matched l a s e r w a i s t
re turn (2* np . s q r t ( matched_a0 ( P , n_e ) ) / k_p ( n_e ) )
def v_g ( n_e ) : # group v e l o c i t y
re turn ( c o n s t . c *np . s q r t (1 − n_e / n_c ) )
def c a l c _ a 0 ( P , w0 , lambda_0 ) : # s t r e n g t h parame te r
I0 = 2*P / ( np . p i *w0**2)
E0 = np . s q r t (2* I0 / ( c o n s t . e p s i l o n _ 0 * c o n s t . c ) )
a0 = E0 *( lambda_0 / ( 2 * np . p i ) ) / ( c o n s t . m_e* c o n s t . c **2 / c o n s t . e )
re turn ( a0 )
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# −−−−−−−−−−
# Parame te r s
# −−−−−−−−−−
use_cuda = True # Whether t o use t h e GPU

# The s i m u l a t i o n box
Nz = 2500 # Number o f g r i d p o i n t s a long z
zmax = 0 . e −6 # R i g h t end o f t h e s i m u l a t i o n box ( m e t e r s )
zmin = −70. e −6 # L e f t end o f t h e s i m u l a t i o n box ( m e t e r s )
Nr = 500 # Number o f g r i d p o i n t s a long r
rmax = 8 0 . e −6 # Leng th o f t h e box a long r ( m e t e r s )
Nm = 2 # Number o f modes used
d i a g _ s t e p s =1000 # P er io d o f t h e d i a g n o s t i c s ( t i m e s t e p s )

# The s i m u l a t i o n t i m e s t e p
d t = ( zmax−zmin ) / Nz / c # T i m e s t e p ( s e c o n d s )
e n d _ o f _ s i m u l a t i o n = 3 . 5 e −3
N_step = i n t ( np . c e i l ( e n d _ o f _ s i m u l a t i o n / ( d t * c ) / \
f l o a t ( d i a g _ s t e p s ) ) * d i a g _ s t e p s +1) # Number o f i t e r a t i o n s t o per form
n _ o r d e r = −1

# Plasma p r o f i l e
n_e = 3 e18 *1 e6 # p l a t e u d e n s i t y
p e a k D e n s i t y = 2 # r e l a t i v e peak d e n s i t y
p l a t e a u D e n s i t y = 1 # r e l a t i v e p l a t e a u d e n s i t y
uprampLength = 800 e −6 # l e n g t h o f d e n s i t y upramp t i l l shock
l e n g t h p a r a m e t e r =1 # r e l a t i v e l e n g t h d e n s i t y down ramp
l p = lambda_p ( p l a t e a u D e n s i t y * n_e ) # plasma w a v e l e n g t h
downrampLength = l e n g t h p a r a m e t e r * l p # shock l e n g t h

# The p a r t i c l e s
p_zmin = 0 . e −6 # P o s i t i o n o f t h e b e g i n n i n g o f t h e plasma ( m e t e r s )
p_zmax = 5 . e −3 # P o s i t i o n o f t h e end o f t h e plasma ( m e t e r s )
p_rmin = 0 . # Minimal r a d i a l p o s i t i o n o f t h e plasma ( m e t e r s )
p_rmax = 7 8 . e −6 # Maximal r a d i a l p o s i t i o n o f t h e plasma ( m e t e r s )
p_nz = 1 # Number o f p a r t i c l e s per c e l l a long z
p_nr = 1 # Number o f p a r t i c l e s per c e l l a long r
p_n t = 4 # Number o f p a r t i c l e s per c e l l a long t h e t a

# The l a s e r p a r a m e t e r s
P = 50*1 e12 # l a s e r power
lambda_0 =8e −7 # l a s e r c e n t r a l w a v e l e n g t h
FWHM_size=20e −6 # I n t e n s i t y FWHM t r a n s v e r s e s i z e
conv =1.177 # c o n v e r s i o n paramter from FWHM t o rms
w0=FWHM_size / conv
a0 = c a l c _ a 0 ( P , w0 , lambda_0 ) # n o r m a l i z e d v e c t o r p o t e n t i a l
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FWHM_time=30e −15 # l a s e r d u r a t i o n
c t a u = FWHM_time* c o n s t . c / conv
z0 = −15e −6 # Laser c e n t r o i d p o s i t o i n

# gas d e n s i t y p r o f i l e
def d e n s _ f u n c ( x ) :
upramp = x [ x<uprampLength ]
uprampDens = upramp **2*( p e a k D e n s i t y / uprampLength **2)
downramp = x [ x>uprampLength ]
downramp = downramp [ downramp<uprampLength+downrampLength ]
downrampDens = ( uprampLength −downramp ) * \
( peakDens i ty − p l a t e a u D e n s i t y ) / downrampLength+ p e a k D e n s i t y
p l a t e a u = x [ x>uprampLength+downrampLength ]
p l a t e a u D e n s = np . o n e s _ l i k e ( p l a t e a u )* p l a t e a u D e n s i t y
d e n s i t y = np . c o n c a t e n a t e ( ( uprampDens , downrampDens , \
p l a t e a u D e n s ) , a x i s =0)
re turn ( d e n s i t y )
uprampEnd=uprampLength
downrampSta r t =uprampEnd
downrampEnd= downrampSta r t +downrampLength

# l o n g i t u d i n a l l a s e r f o c a l s p o t p o s i t i o n
f o c s h i f t = 0 . 0 # p o s i t i o n r e l a t i v e t o downramp
z _ f o c = downrampSta r t + f o c s h i f t

# i n t e r p o l a t e d e n s i t y f u n c t i o n
p o s i t i o n = np . l i n s p a c e ( 0 , e n d _ o f _ s i m u l a t i o n +1e −6 ,5000)
f = i n t e r p o l a t e . i n t e r p 1 d ( p o s i t i o n , d e n s _ f u n c ( p o s i t i o n ) , \
b o u n d s _ e r r o r = F a l s e , f i l l _ v a l u e = (0 , p l a t e a u D e n s i t y ) )

# f u n c t i o n t o a v o i d s i m u l a t i o n a r t i f a c t s when p o p u l a t i n g
# n e i g h b o r i n g r e g i o n s o f t h e s i m u l a t i o n
def roundToCe l l ( pos , dpos ) :
re turn round ( pos / dpos ) * dpos

# d e f i n e b o u n d a r i e s f o r d i f f e r e n t r e g i o n s t o sample
i n n e r b o u n d a r y = roundToCe l l ( 1 . 5 * lp , rmax / Nr )
b e f o r e b o u n d a r y = roundToCe l l ( uprampEnd −3* lp , ( zmax−zmin ) / Nz )
shockbounda ry = roundToCe l l ( w0 , rmax / Nr )
downrampboundary= roundToCe l l ( downrampStar t −3* lp , ( zmax−zmin ) / Nz )
downrampendboundary= roundToCe l l ( downrampEnd+3* lp , ( zmax−zmin ) / Nz )

# f u n c t i o n t o s e p a r a t e r e g i o n ( I I −IV ) from r e g i o n I
def d e n s _ f u n c _ i n n e r ( z , r ) :
n= f ( z )*(1 − np . h e a v i s i d e ( r − i n n e r b o u n d a r y , 0 ) )
re turn ( n )
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# f u n c t i o n r e g i o n I
def d e n s _ f u n c _ o u t e r ( z , r ) :
n= f ( z )*(1 − np . h e a v i s i d e ( r −p_rmax , 0 ) ) * \
np . h e a v i s i d e ( r − i n n e r b o u n d a r y , 0 )
re turn ( n )
# f u n c t i o n r e g i o n I I
def d e n s _ f u n c _ b e f o r e ( z , r ) :
n= d e n s _ f u n c _ i n n e r ( z , r )*(1 − np . h e a v i s i d e ( z− b e f o r e b o u n d a r y , 0 ) )
re turn ( n )
# f u n c t i o n r e g i o n V
def d e n s _ f u n c _ s h o c k ( z , r ) :
n= f ( z )*(1 − np . h e a v i s i d e ( r − shockboundary , 0 ) ) * \
( np . h e a v i s i d e ( z−downrampboundary , 0 ) ) * \
np . h e a v i s i d e ( downrampendboundary −z , 0 )
re turn ( n )
# f u n c t i o n r e g i o n IV
def d e n s _ f u n c _ s h o c k 2 ( z , r ) :
n= f ( z )*(1 − np . h e a v i s i d e ( r − i n n e r b o u n d a r y , 0 ) ) * \
np . h e a v i s i d e ( r − shockboundary , 0 ) * \
( np . h e a v i s i d e ( z−downrampboundary , 0 ) ) * \
np . h e a v i s i d e ( downrampendboundary −z , 0 )
re turn ( n )
# f u n c t i o n r e g i o n I I I
def d e n s _ f u n c _ a f t e r ( z , r ) :
n= d e n s _ f u n c _ i n n e r ( z , r ) * \
( np . h e a v i s i d e ( z−downrampendboundary , 0 ) )
re turn ( n )

# The moving window
vg = v_g ( p l a t e a u D e n s i t y * n_e )
v_window = vg # Speed o f t h e window

# The d i a g n o s t i c s and t h e c h e c k p o i n t s / r e s t a r t s
d i a g _ p e r i o d = d i a g _ s t e p s # P er io d o f t h e d i a g n o s t i c s
d i a g _ f i e l d s = d i a g _ s t e p s # P er io d o f t h e d i a g n o s t i c s
s a v e _ c h e c k p o i n t s = F a l s e # Whether t o w r i t e c h e c k p o i n t f i l e s
c h e c k p o i n t _ p e r i o d = 80000 # P er io d f o r w r i t i n g t h e c h e c k p o i n t s
u s e _ r e s t a r t = F a l s e # Whether t o r e s t a r t from a p r e v i o u s c h e c k p o i n t
t r a c k _ e l e c t r o n s = True # Whether t o t r a c k and w r i t e p a r t i c l e i d s

# −−−−−−−−−−−−−−−−−−−−−−−−−−−
# C a r r y i n g o u t t h e s i m u l a t i o n
# −−−−−−−−−−−−−−−−−−−−−−−−−−−
i f __name__ == ’ __main__ ’ :
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# I n i t i a l i z e t h e s i m u l a t i o n o b j e c t
sim = S i m u l a t i o n ( Nz , zmax , Nr , rmax , Nm, dt ,
zmin=zmin , b o u n d a r i e s = ’ open ’ , i n i t i a l i z e _ i o n s =True ,
n _ o r d e r = n_orde r , u se_cuda = use_cuda )
sim . p t c l = [ ]

# p o p u l a t e r e g i o n s w i t h d i f f e r e n t m a c r o p a r t i c l e d e n s i t i e s
# p o p u l a t e r e g i o n V
e l e c = sim . add _new_ sp ec i e s ( q=−e , m=m_e , n=n_e ,
d e n s _ f u n c = dens_ func_shock , p_nz =2* p_nz , \
p_nr =4* p_nr , p_ n t =2* p_nt , p_zmin=p_zmin )
# p o p u l a t e r e g i o n IV
e l e c 2 = sim . a dd_n e w_spec i e s ( q=−e , m=m_e , n=n_e ,
d e n s _ f u n c = dens_func_shock2 , p_nz =2* p_nz , \
p_nr =4* p_nr , p_ n t =2* p_nt , p_zmin=p_zmin )
# p o p u l a t e r e g i o n I
e l e c _ o u t = sim . ad d_new _s pec i e s ( q=−e , m=m_e , n=n_e ,
d e n s _ f u n c = d e n s _ f u n c _ o u t e r , p_nz=p_nz , \
p_nr =p_nr , p_n t =p_nt , p_zmin=p_zmin )
# p o p u l a t e r e g i o n I I
e l e c _ b e f o r e = sim . add_ n ew_s pec i e s ( q=−e , m=m_e , n=n_e ,
d e n s _ f u n c = d e n s _ f u n c _ b e f o r e , p_nz=p_nz , \
p_nr =p_nr , p_n t =p_nt , p_zmin=p_zmin )
# p o p u l a t e r e g i o n I I I
e l e c _ a f t e r = sim . add _n ew_s pe c i e s ( q=−e , m=m_e , n=n_e ,
d e n s _ f u n c = d e n s _ f u n c _ a f t e r , p_nz=p_nz , \
p_nr =p_nr , p_n t =p_nt , p_zmin=p_zmin )

a d d _ l a s e r ( sim , a0 , w0 , c t au , z0 , z f = z _ f o c ) # Add l a s e r p u l s e

i f u s e _ r e s t a r t i s F a l s e :
i f t r a c k _ e l e c t r o n s : # Track e l e c t r o n s i f r e q u i r e d
e l e c . t r a c k ( sim . comm)
e l e c 2 . t r a c k ( sim . comm)
e l e c _ o u t . t r a c k ( sim . comm)
e l e c _ b e f o r e . t r a c k ( sim . comm)
e l e c _ a f t e r . t r a c k ( sim . comm)
e l s e :
r e s t a r t _ f r o m _ c h e c k p o i n t ( sim )

sim . set_moving_window ( v=v_window ) # C o n f i g u r e t h e moving window

# Add d i a g n o s t i c s
w r i t e _ d i r = ’ d i a g s ’+ s t r ( 0 . 0 )
sim . d i a g s = [ F i e l d D i a g n o s t i c ( d i a g _ f i e l d s , sim . f l d , \
comm=sim . comm , w r i t e _ d i r = w r i t e _ d i r ) , \
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P a r t i c l e D i a g n o s t i c ( d i a g _ p e r i o d , { " e l e c " : e l e c , \
" e l e c _ b e f o r e " : e l e c _ b e f o r e , " e l e c 2 " : e l e c 2 , \
" e l e c _ o u t " : e l e c _ o u t , " e l e c _ a f t e r " : e l e c _ a f t e r } , \
comm=sim . comm , w r i t e _ d i r = w r i t e _ d i r ) ]

# Add c h e c k p o i n t s
i f s a v e _ c h e c k p o i n t s :
s e t _ p e r i o d i c _ c h e c k p o i n t ( sim , c h e c k p o i n t _ p e r i o d )

### Run t h e s i m u l a t i o n
sim . s t e p ( N_step )
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Glossary

AOPDF acousto-optic programmable dispersive filter

ASE amplified spontaneous emission

ATLAS Advanced Titanium Sapphire Laser System

BSI barrier-suppression ionization

CAD computer-aided design

CALA Centre for Advanced Laser Applications

CCD charge-coupled device

CERN European Organization for Nuclear Research

CPA chirped pulse amplification

CPU central processing unit

CTR coherent transition radiation

DAQ data acquisition

DC direct current

FBPIC Fourier-Bessel Particle-In-Cell

FEL free-electron laser

FROG frequency-resolved optical gating

FWHM full width at half maximum

GPU graphics processing unit

HDF5 Hierarchical Data Format 5

LEX Laboratory for EXtreme Photonics

LHC Large Hadron Collider

LPA laser plasma accelerator



Glossary

LWFA laser wakefield accelerator

ND neutral-density

Nd:YAG neodymium-doped yttrium aluminum garnet

OAP off-axis parabolic mirror

openPMD open standard for particle-mesh data files

PIC particle-in-cell

PtV peak to valley

PWFA plasma wakefield accelerator

RF radio frequency

RMS root mean square

SPM self-phase modulation

SRSI self-referenced spectral interferometry

std standard deviation

STII self-truncated ionization injection

Ti:Sa titanium-sapphire
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Data Archiving

The experimental and simulated raw data, corresponding evaluation files, and notebooks to
generate the figures are stored on the Data Archive Server of the Laboratory for Attosecond
Physics at the Max Planck Institute of Quantum Optics accessible under

/afs/ipp-garching.mpg.de/mpq/lap/publication_archive/Theses/2023/
Götzfried,Johannes(PhD).

The list of figures in the next section contains a comment for each plot indicating the
specific paths relative to the base directory where the files necessary to generate the
individual plot can be found. Typically, the experimental raw data are stored as .png or
.txt. Input files to set up the respective simulations (.py) and generate the simulated raw
data (.h5) are given in each case. The processing of all the raw data is either done in
Matlab or Python. If appropriate, intermediate data files are stored as .mat or .npy/.npz
respectively. The final plots (.pdf) are either generated from this intermediate data or
directly via Jupyter notebooks (.ipynb). If no file is given, the image is an Inkscape
drawing. Where necessary, ReadMe.txt files located in the respective folders provide
further explanations and information.

/afs/ipp-garching.mpg.de/mpq/lap/publication_archive/Theses/2023/G�tzfried, Johannes (PhD)
/afs/ipp-garching.mpg.de/mpq/lap/publication_archive/Theses/2023/G�tzfried, Johannes (PhD)
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