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1. Introduction

High-harmonic generation (HHG) is a phenomenon that allows for generating broad-
band coherent radiation in the extreme ultraviolet (XUV) and soft X-ray regimes
by irradiating a medium with a very intense pulsed laser. The medium usually is
realized as a gas stream, but it is also possible to use solid targets, which are subject
to damage induced by the high intensities, however. Using HHG in gas targets, it
is possible to build table-top XUV sources that allow spectroscopy and microscopy
applications with both excellent frequency resolution due to inherent frequency comb
features and time resolution in the attosecond regime due to the broad spectrum.

For some applications, it is interesting to achieve not only high intensities of the
harmonic radiation, but also to drive the process with a high repetition rate, e.g.
for precision spectroscopy applications that require su�cient tooth spacing in the
frequency comb, which is also linked to the per-tooth spectral intensity, or for appli-
cations where there is an intrinsic limit on the amount of data that can be obtained in
a single pass. To achieve a high repetition rate, it is practical to produce the harmonic
radiation within an enhancement cavity (EC), which is an externally driven passive
resonator that allows to convert lower-intensity seeding laser pulses to considerably
higher-intensity circulating pulses. While HHG in general is a rather mature �eld
of research that has already been extensively studied in the last two decades, HHG
in enhancement cavities is an actively researched topic for which several interesting
questions and challenges remain open, most importantly to �nd a good mechanism
for output coupling of the harmonic radiation and to achieve isolated attosecond
pulses.

The primary goal of this thesis was to develop, implement and apply a computa-
tional model that allows to investigate and understand the e�ects of the numerous
degrees of freedom on the harmonic radiation produced by gas targets, especially in
the context of enhancement cavities, in order to optimize di�erent aspects of the ra-
diation. The most important degrees of freedom come from the choice of the driving
�eld. The non-linear response of a single target particle (here we restrict ourselves
to atoms) depends on the time evolution of the electric �eld at the position of the
particle, and the macroscopic �eld is determined by the coherent superposition of
the single-atom responses which makes it depend on the spatial features of the driv-
ing �eld. Interesting aspects for which the output radiation can be optimized are a
maximal harmonic yield for a speci�c harmonic order, the harmonic beam quality
(divergence angle, focusability), suitability of the radiation for certain output cou-
pling mechanisms, a continuous and broad-band spectrum, and the reduction of the
harmonic radiation to single isolated attosecond pulses per driving �eld pulse using
gating mechanisms.
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The �rst declared task was to convert an existing computational model for the
single-atom dipole response from Matlab to C++ in order to improve the perfor-
mance. I achieved a speed improvement of a factor of 100 and also extended the
implementation to elliptically polarized driving �elds, which makes it possible to
investigate polarization gating methods in the future. The model and the implemen-
tation are described in chapter 2.2 and 3.2 in more detail, respectively.
Then, the model was to be extended so that HHG with tailored driving �elds can

be simulated. For this, I had to familiarize myself with the particular steps that are
needed to model the macroscopic response of a gas target. Speci�cally, building on
the idea of an existing implementation developed in the group where I did my thesis,
I developed a simple model for a pulsed driving laser beam that is general enough
to describe arbitrary superpositions of fundamental and higher-order transverse res-
onator modes (chapter 3.3). Second, I derived a solution to the well-established
�rst-order propagation equation, which allows to compute the macroscopic electric
�eld of the harmonic radiation from the individual single-atom responses (chapter
3.4) and incorporates phase matching e�ects. To provide a way to compute the
harmonic �eld within an arbitrarily oriented plane at a larger distance from the
gas target, I applied the far-�eld approximation (chapter 3.5). For comparing data
obtained from the computational model with experimental data, I worked out a for-
mula that maps an electric �eld distribution of the harmonics to the observed image
on a �uorescent screen, taking into account the conversion e�ciency (chapter 3.6).
Moreover, I derived an algorithm that simulates the e�ect of a di�raction grating
with arbitrary orientation placed in the harmonic beam (chapter 3.7).
Finally, the computational model should be used to design, optimize and interpret

experiments carried out in the vicinity of our group. For this, I spent several months
participating in experimental work in the laboratory, which allowed me to gain some
experimental experience, while re�ning the implementation of the developed model
in parallel. At the end of that time, a HHG experiment in an enhancement cavity
with a higher-order transverse driving �eld mode tailored for output coupling was
conducted, which enabled me to experience a direct connection between theorical
and experimenal work. I took part in the set-up, data acquisition and interpreta-
tion steps of the experiment, where the latter one involved intensive usage of the
model implemented in the scope of this thesis for investigating the impact of phase
matching, the output coupling e�ciency and the harmonic beam pro�les. The full-
widths at half-maximum of the beam pro�les determined in the experiment were
found to agree very well with the ones obtained from corresponding simulations.
Both experiment and simulations are described in detail in chapter 4.3.2.
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2. High Harmonic Generation in Gas

Targets

High harmonic generation is a means of accomplishing coherent broad-band radiation
over a broad spectral range. Using an infrared driving laser with noble gas targets,
it is possible to achieve harmonics orders up to several hundreds, i.e. up to the
soft x-ray regime. Coherent radiation in this spectral range is usually not accessible
without large accelerators.

While the conversion e�ciency is very low (≈ 10−7), the harmonic radiation shows
a plateau behavior in the spectrum, i.e. the intensity of high harmonics does not drop
signi�cantly with increasing harmonic order up to a cuto� frequency, which means
that the produced radiation can be very broad-band, spanning several octaves. This
makes it a very valuable tool for spectroscopy, where the broad spectrum permits a
time resolution down to the attosecond domain.

High harmonic generation in gas targets was �rst observed in 1987 by McPherson
et al. [17], who produced harmonics up to the 17th in neon. In 1993, Corkum
presented a descriptive semi-classical model for the underlying microscopic process,
which is able to explain the most important features like the plateau and cuto�
of the harmonic spectrum [6]. Building on the picture suggested by Corkum et al.,
Lewenstein et al. developed a more elaborate model for the harmonic emission of gas
atoms in 1994 [16], which starts with a full quantum mechanical ansatz and makes
some well-grounded approximations. This model not only explains all important
features of the phenomenon, but also provides quantitatively correct results (except
for a prefactor) for the harmonic spectral intensity of a single atom in the regime
where the approximations are well ful�lled.

2.1. Simple Man's Model

For an accurate description of what happens in a single atom when it is irradiated
with an intense driving �eld, the most consequent approach would be to solve the
three-dimensional time-dependent Schrödinger equation. This is di�cult however,
especially if multiple electrons are to be considered, and it takes much computation
time.

For getting a picture of how high harmonic radiation emerges, the so-called three-
step model described by Corkum et al. can be considered. In this model, the process
is divided into three steps (see �gure 2.1):

• The electric �eld of the intense driving laser bends the atomic potential so that
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Figure 2.1.: Three step model

an electron can tunnel out (tunnel ionization).

• The now free electron is accelerated away from the atom by the electric �eld
of the driving laser. When the oscillating electric �eld changes its sign, the
electron is accelerated back to the core.

• When the electron reaches the core, it recombines. As the electron acquired
kinetic energy during propagation, the emitted radiation can reach high fre-
quencies.

This model is able to explain the most important features of high harmonic gen-
eration: First of all, it is easy to see that there is a cuto� frequency. Depending
on the strength of the driving �eld, the electron can only acquire a certain amount
of kinetic energy during its way. This limits the energy that can be released upon
recombination. The model is even able to predict the value of the cuto� frequency
ωc as

h̄ωc ≈ 3.17Up + Ip

where Up = 2e2/(cε0m) · I/(4ω2
0) is the ponderomotive energy of the electron, which

depends on the driving �eld intensity I, and Ip is the ionization potential of the
atom. This cuto� law is con�rmed experimentally.

Furthermore, one can compute the spectrum of the harmonic radiation with this
model if the dependence of the ionization probability of the atom on the driving �eld
is known. This does not yield quantitatively correct results, yet it is possible to see
the formation of the plateau.

The model provides another very important insight: When a periodic driving �eld
is assumed, which is a good approximation for long pulses, for a given harmonic
frequency there are two distinct electron trajectories that lead to emission at this
frequency. One trajectory has a shorter and one a longer excursion time, therefore
they are called the short and long trajectory, accordingly. Even though the radiation
created by both trajectories interferes, it is often possible to discriminate features of
one trajectory even in the far �eld of the harmonic radiation due to their slightly
di�erent behavior.
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2.2. Lewenstein Model

Building on this understanding, Lewenstein et al. provided a more sophisticated
model for high harmonic generation in gas atoms. It is a quantum-mechanical model
with some well-grounded approximations. Following [16] closely, the derivation is
outlined shortly.
The starting point is the three-dimensional time-dependent Schrödinger equation

(TDSE) for one shell electron

i
∂

∂t
|ψ(t)〉 =

[
−1

2
∇2 + V (r)− E cos(t)x

]
|ψ(t)〉 ,

where V (r) is the atomic potential and the E cos(t)x term is the additional potential
due to a periodic electric �eld of the driving laser. The magnetic force can be
neglected for the intensities at which harmonics are usually generated (below or on
the order of 1015 W/cm2).
The unit system used here is atomic units but with energies expressed in multiples
of the driving laser photon energy, which is called �scaled atomic units� � in the
following.
The TDSE is solved using an ansatz that is basically a decomposition into vacuum

continuum states, but has an extra term for the ground state. Several assumptions
and approximations are made on the way:

• The only bound state that plays a role for the evolution of the system is the
ground state.

• The depletion of the ground state is neglected. This is only a good assumption
if the driving �eld intensity is weak enough or the interaction time is small, i.e.
short driving pulses.

• There is no overlap of the continuum states with the ground state, nor is there a
coupling between the continuum states due to the atomic potential V (r). This
approximation together with the �rst are justi�ed by the picture described
before: The electron is in the ground state, then ionization occurs (however,
only a small fraction of the wave function leaves the ground state) and then
the electron propagates freely without impact of the atomic potential. The
approximation of free propagation is only valid if the kinetic energy of the
electron is high, which requires a strong driving �eld.

With the derived time-dependent wave function |ψ(t)〉 it is possible to calculate the
time-dependent dipole element

d(t) = −e · r(t) = −r(t) = −〈ψ(t)|r̂|ψ(t)〉 ,

which turns out to be an integral over time and the canonical momentum of the
electron. Using a saddle point method, it is possible to perform the integration over
the canonical momentum. Applying the saddle point method is equivalent to only
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considering momenta that correspond to trajectories that start and end at the same
position. Then the dipole moment gets

d(t) = −iex ·
∫ ∞
0

dτ

(
π

ε+ iτ/2

)3/2

·E cos(t− τ) ·Dx (ps(t, τ)−Ax(t− τ))×

× exp (−iSs(t, τ)) ·D∗x (ps(t, τ)−Ax(t)) + c.c.

(2.1)

This term has an intuitive physical interpretation. The integral can be seen as a
sum over complex probability amplitudes for electron trajectories that return to the
same point after an excursion time τ . This probability amplitude is constituted of
three terms.

The �rst term E cos(t− τ) ·Dx (ps(t, τ)−Ax(t− τ)) gives the probability ampli-
tude that the driving �eld E cos(t− τ) releases the electron to the continuum. Here,
the term Dx(vi) gives a coupling of the ground state to the vacuum continuum state
corresponding to the initial electron velocity vi = ps(t, τ)−Ax(t− τ). The function
Dx(v) is given by the dipole matrix elements D = 〈v|r|0〉, where |v〉 denotes the
vacuum continuum state for the electron velocity v and |0〉 denotes the ground state.

The second term exp (−iSs(t, τ)) is the phase that the electron acquires during
propagation, where Ss is the quasiclassical action corresponding to the trajectory.
The term for the quasiclassical action, which is given later, manifests a close analogy
to the classical action for a freely propagating electron that does not see the atomic
potential.

The third term D∗x (ps(t, τ)−Ax(t)) gives the probability amplitude for �recom-
bination�, i.e. a coupling of the vacuum continuum state corresponding to the rec-
ollision velocity vr = ps(t, τ) − Ax(t) with the ground state. Note that the word
recombination does not describe well what is happening � this in fact not a recombi-
nation, as the picture of Corkum suggests, but interference of the ground state wave
function with the returning wave packet.

During propagation, the electronic wave packet disperses so that the overlap with
the ground state wave function will become smaller with increasing excursion time τ .
This is what the prefactor (π/(ε+ iτ/2))3/2 accounts for. Here, ε is a small positive
constant that prevents the integrand from diverging for τ = 0.

The model of Lewenstein et al. is successful in explaining all important features
of high harmonics like the plateau and the cuto�, and can easily be used to compute
the dipole response of single atoms and from this, using a Fourier transformation,
the dipole spectrum. In the regime where the approximations are valid, it is able
to reproduce the shape of the dipole spectra obtained from solving the TDSE (see
e.g. [15]). Moreover, it clearly reproduces the intuitive picture suggested by Corkum
using well-grounded approximations.
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2.3. Limitations and Alternatives

However, it is very important to know when these approximations are justi�ed and
when they are not. The �rst assumption is that the magnetic force on the electron
due to the driving �eld can be neglected. This force grows with both the driving
�eld intensity and the driving �eld wavelength. A valid regime would be e.g. for
intensities below 1016 W/cm2 and wavelengths below 2000 nm [3].

Moreover, in the formula provided for the dipole moment, the depletion of the
ground state is neglected. For short pulses at low intensities, this is not a problem,
but when the interaction time or the driving �eld intensity is larger, the ground state
depletion must be accounted for. This limitation can be �xed, however � the paper
of Lewenstein et al. also provides a formula where depletion is not neglected.

A key assumption of the model is that the electron can propagate freely, without
seeing the atomic potential, after ionization occured. This is only the case if the
kinetic energy of the free electron is su�ciently high, i.e. when the driving �eld has
a high intensity. To check whether the intensity is high enough, one can consider the
Keldysh parameter

γ =

√
Ip

2Up
,

which should be much smaller than one � this corresponds to a regime where tunnel
ionization and not multiphoton ionization is the dominant process. So in order for
the approximations to work, there are lower and upper bounds on the driving �eld
intensity.

In the classical picture on which the Lewenstein model builds, it is not possible
to produce harmonics with a photon energy below the ionization energy Ip, so the
Lewenstein model cannot be expected to deliver accurate results for these harmonics.
However, another very important conclusion from the free propagation assumption is
that also harmonics with a photon energy slightly above the ionization energy are not
handled well. The reason is that these harmonics correspond to electron trajectories
with a low kinetic energy on recollision so that the e�ect of the atomic potential
cannot be neglected. Moreover, for these trajectories the electrons generally do not
achieve a large distance to the core.

One assumption of the model is that only one outer shell electron is considered.
Although harmonics are usually created with noble gases that have many outer shell
electrons, this so-called single active electron approximation works �ne for HHG in
the strong �eld regime.

For applying the Lewenstein model, one needs the dipole matrix elements D =
〈v|r|0〉. These dipole matrix elements depend on the ground state |0〉 which in turn
depends on the atomic potential V (r). As it is not obvious how to choose the atomic
potential in the case of multiple electrons, the paper of Lewenstein et al. suggests
several simple model ground states. Depending on the used dipole matrix elements,
the obtained dipole spectra change considerably. One commonly used method to get
the dipole matrix elements is to consider a hydrogen-like potential scaled for a given
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ionization potential Ip. Then the dipole matrix elements in scaled atomic units are

D(v) = i

(
27/2α5/4

π

)
v

(v2 + α)3
(2.2)

with α = 2Ip. If one wants to obtain quantitatively better results, however, it is
necessary to use more accurate dipole matrix elements.

Nowadays, several promising alternatives and extensions to the Lewenstein model,
which was already introduced in 1994, are available. E.g. Plaja et al. [22] present
a model that can quantitatively reproduce the harmonic yield for high harmonics,
with signi�cantly improved computation time compared to solving the TDSE. Frolov
et al. [9] derive analytic formulas for the harmonic spectral density that can be ap-
plied to pulses with arbitrary length and carrier-envelope phase. Le el al [15] provide
an easy method to scale the harmonic yield predicted the Lewenstein model which
signi�cantly improves the data for lower harmonics.
For the purpose of this thesis, we nonetheless decided to adopt the Lewenstein

model, at least for �rst computational implementation, for the following reasons:
First of all, it is easy to implement. Second, it can be implemented e�ciently, so that
a personal computer can compute hundreds of dipole responses per second. Third, it
is well-established. It has been used and veri�ed in many publications, which means
that its strengths and limitations are well-known and that it is easy to �nd data
to which the implementation can be compared (see chapter 4.1). Moreover, apart
from the dipole matrix elements and the ionization potential of the model atom, no
additional data is needed for performing simulations. Another advantage is that the
model has a nice interpretation in terms of probability amplitudes. Finally, it is easy
to extend the model to elliptically polarized driving �elds, which is done in the next
chapter.

2.4. Extension to Elliptically Polarized Driving Fields

The original paper of Lewenstein et al. assumed a periodic, linearly polarized driving
�eld. It is however possible to generalize the formula for a general driving �eld E(t)
with arbitrary polarization, which is done in [2]. Instead of formula (2.1), one obtains

d(t) = −iex ·
∫ ∞
0

dτ

(
π

ε+ iτ/2

)3/2

· [E(t) ·D (ps(t, τ)−A(t− τ))]×

× exp (−iSs(t, τ)) ·D∗ (ps(t, τ)−A(t)) + c.c.

(2.3)

which is constituted of the same terms as before but uses vector quantities. Here,
A(t) is the vector potential given by

A(t) = −
∫ t

−∞
dt′ E(t′), (2.4)
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the stationary value of the canonical momentum is given by

ps(t, τ) =

∫ t

t−τ
dt′′A(t′′)/τ (2.5)

and the quasiclassical action is given by

Ss(t, τ) =

∫ t

t−τ
dt′′
(

(ps(t, τ)−A(t′′))2

2
+ Ip

)
. (2.6)
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3. A Computational Model

3.1. De�nitions

There are two alternative sign conventions for describing a plane wave:

Epw(r, ω) = Aei(ωt−k · r+φ0)

Epw(r, ω) = Aei(k · r−ωt+φ0)

Here, we choose the latter one. Consequently, we use the following expression for
the inverse temporal Fourier transform:

F−1t
{
f̃
}

=
1

2π

∫
f̃(ω) · e−iωt dkxdky (3.1)

This corresponds to a Fourier transform

Ft {f} =

∫
f(t) · eiωt dxdy. (3.2)

On the contrary, for the two-dimensional inverse spatial Fourier transforms we use

F−1xy
{
f̃
}

=
1

(2π)2

∫∫
f̃(kx, ky) · ei(kxx+kyy) dkxdky, (3.3)

which corresponds to a Fourier tranform

Fxy {f} =

∫∫
f(x, y) · e−i(kxx+kyy) dxdy. (3.4)

3.2. E�cient Implementation of the Lewenstein Model

To get the single atom dipole response d(t), we need to numerically evaluate integral
(2.3):

d(t) = −iex ·
∫ ∞
0

dτ

(
π

ε+ iτ/2

)3/2

· [E(t) ·D (ps(t, τ)−A(t− τ))]×

× exp (−iSs(t, τ)) ·D∗ (ps(t, τ)−A(t)) + c.c.

(3.5)

For this, a simple trapezoidal rule can be used, which can be implemented easily
and e�ciently.
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One problem that must be solved is that the upper limit of the integral is in�n-
ity. Physically, τ represents the excursion time of the electron and the prefactor of
the integrand (π/(ε+ iτ/2))3/2 accounts for the spread of the returning wave packet.
The longer the excursion time, the more time the wave packet will spread and the
less overlap the returning wave packet will have with the ground state wave function,
which is why the prefactor falls rapidly with increasing τ . Therefore, no large error
is made if the upper integration limit is replaced by a suitable �nite value. However,
due to the rapidly oscillating integrand, simply cutting the integral at a �nite value
would introduce artifacts into the dipole response, which would result in a noise-like
background in the dipole spectrum. So it is better to apply a soft window at the
upper integration limit, i.e. to evaluate the integral

d(t) = −iex ·
∫ τmax

0
dτ w(τ) ·

(
π

ε+ iτ/2

)3/2

· [E(t) ·D (ps(t, τ)−A(t− τ))]×

× exp (−iSs(t, τ)) ·D∗ (ps(t, τ)−A(t)) + c.c.

(3.6)

where w(τ) is a weight function with w(τ) = 1 for an interval [0, τ1], then a falling
soft window in the interval [τ1, τmax] and �nally w(τmax) = 0. The lower τmax is
chosen, the larger the error will be that we make, but the less time the numerical
integration takes. So it is necessary to �nd a good compromise between speed and
accuracy. Most physically interesting e�ects are covered if the short and long tra-
jectories are both included, for which we need at least τ1 = T , where T is the cycle
duration of the driving �eld. To suppress the noise, a cos2 window of duration T/2
is su�cient, i.e. τmax = 3

2T .

Another problem is that the integrand in turn contains other integrals given by
(2.4) to (2.6):

A(t) = −
∫ t

−∞
dt′E(t′)

ps(t, τ) =

∫ t

t−τ
dt′′A(t′′)/τ

S(ps, t, τ) =

∫ t

t−τ
dt′′
(

(ps(t, τ)−A(t′′))2

2
+ Ip

)
These sub-integrals need to be computed for every value of τ , therefore we need to

�nd a way to evaluate them e�ciently. For this, we rewrite the last two expressions
as follows:

ps(t, τ) =

∫ t

t−τ
dt′′A(t′′)/τ =

=
1

τ

∫ t

0
dt′′A(t′′)− 1

τ

∫ t−τ

0
dt′′A(t′′) =

=
1

τ
(B(t)−B(t− τ))
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where we de�ne B(t) :=
∫ t
0 dt′′A(t′′), and

S(ps, t, τ) =

∫ t

t−τ
dt′′
(

(ps(t, τ)−A(t′′))2

2
+ Ip

)
=

=

∫ t

t−τ

p2
s(t, τ)

2
dt′′ −

∫ t

t−τ

2ps(t, τ)A(t′′)

2
dt′′ +

∫ t

t−τ

A2(t′′)

2
dt′′ + τIp =

=
τ

2
p2
s(t, τ)− ps(t, τ)

∫ t

t−τ
A(t′′)dt′′ +

∫ t

t−τ

1

2
A(t′′)2dt′′ + τIp =

=
τ

2
p2
s(t, τ)− ps(t, τ) (B(t)−B(t− τ)) +

+
1

2

(∫ t

0
A2(t′′)dt′′ −

∫ t−τ

0
A2(t′′)dt′′

)
+ τIp =

=

(
τ

2τ2
− 1

τ

)
(B(t)−B(t− τ))2 +

1

2
(C(t)− C(t− τ)) + τIp =

= τIp −
1

2τ
(B(t)−B(t− τ))2 +

1

2
(C(t)− C(t− τ))

where we de�ne C(t) :=
∫ t
0 dt′′A2(t′′). Then the quantities B(t) and C(t) can be

easily precomputed, again using the trapezoidal rule, so that we do not need to eval-
uate the integrals ps(t, τ) and S(ps, t, τ) for each value of τ .

One problem that remains to be solved is the in�nite lower limit of the integral

A(t) = −
∫ t

−∞
dt′E(t′).

This may not be a problem if E(t) = 0 for t < tmin, but it certainly is e.g. for a
periodic driving �eld E(t). However, x(t) does not change its value if we simply
replace A(t) by

A′(t) := −
∫ t

0
dt′E(t′),

as it only contains expressions of the form ps(t1, τ) −A(t2), which are invariant if
we substitute A by A′:

ps(t1, τ)−A(t2) =

∫ t1

t1−τ
dt′′A(t′′)/τ −A(t2)

=

∫ t1

t1−τ
dt′′
(
A′(t′′)−

∫ 0

−∞
dt′E(t′)

)
/τ −

(
A′(t2)−

∫ 0

−∞
dt′E(t′)

)
=

∫ t1

t1−τ
dt′′A′(t′′)/τ −

∫ 0

−∞
dt′E(t′)

∫ t1

t1−τ
dt′′/τ +

∫ 0

−∞
dt′E(t′)−A′(t2)

=

∫ t1

t1−τ
dt′′A′(t′′)/τ −A′(t2)

= pA′
s (t1, τ)−A′(t2)
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So �nally, we are able to precomputeA′(t),B(t) and C(t), so that the τ integration
can be performed e�ciently without doing further integrations.

3.3. Driving Field

To model the driving �eld, we make two assumptions. First of all, it is assumed that
the refractive index n is isotropic, spatially homogenous and does not change with
time. This is the case before the driving �eld hits the gas target. Within the target,
however, this assumption can be problematic, as described in chapter 3.3.4. Second,
the driving �eld is assumed to be collimated around an optical axis, i.e. it has the
form of a beam.

The general ansatz we use for the electric �eld E(r, t) is a temporal Fourier de-
composition

E(r, t) =
1

2π

∫
Ẽ(r, ω)e−iωtdω. (3.7)

When this is inserted into the wave equation, which follows from the Maxwell
equations in absence of free charges and currents, we get the following equation for
the frequency components Ẽ:

∆Ẽ(r, ω) + k2Ẽ(r, ω) = 0 (3.8)

Here, the wave number k is given by k(ω) = n(ω) ·ω/c. The assumptions we made
allow us to use the more convenient paraxial wave equation instead. For this, we
choose the optical axis to be equal with the z axis, and use the ansatz

Ẽ =

 U1

U2

0

 · eik(ω)z, (3.9)

which is chosen so that Ui vary slowly in z direction. Therefore, if the ansatz is
inserted into (3.8), the ∂2

∂z2
part of the Laplacian can be neglected. This is called

paraxial approximation. We arrive at the so-called �paraxial wave equation� (com-
pare to (1.5) in [18])

∆⊥Ui + 2ik
∂Ui
∂z

= 0. (3.10)

This is an inhomogenous di�erential equation, for which an orthonormal basis of
solution functions can be provided. One commonly used set of solution functions
leads to the so-called �Gauss-Hermite modes� (compare to e.g. (2.25) and (2.28) in

17



[18]1) when inserted back into the ansatz (3.9):

Ẽi(r, ω) = GHnm(r) :=
w0

w(z)
·Hn

(√
2

x

w(z)

)
exp

(
− x2

w2(z)

)
×

Hm

(√
2

y

w(z)

)
exp

(
− y2

w2(z)

)
×

exp

[
i

(
kz − Φnm(z) +

k

2R(z)
(x2 + y2)

)] (3.11)

with the subexpressions

w(z) = w0

√
1 + (z/zR)2, (3.12)

R(z) = z + z2R/z, (3.13)

Φnm(z) = (n+m+ 1) arctan(z/zR), (3.14)

zR =
kw2

0

2
, (3.15)

the physical Hermite polynomials Hn(x), and the parameters n ∈ N0, m ∈ N0,
w0 and k = n(ω) ·ω/c. For given parameters w0 and k, the Gauss-Hermite modes
GHnm form a complete orthonormal basis for the solution space of the wave equation
in paraxial approximation. There are also other basis systems in use, e.g. the
Gauss-Laguerre modes that arise from a treatment in cylindrical coordinates. The
advantage of the Gauss-Hermite modes is that they can be exited directly in cavities
by choosing the geometry so that they become resonant. So while the general solution
is a superpositon of Gauss-Hermite modes, it is often su�cient to only consider one
mode except the cavity is tuned so that multiple modes are resonant at the same
time (see chapter 4.3.2). The most commonly used mode is GH00, which corresponds
to a Gaussian beam.

The parameter w0 is called the beam waist of the mode, as it describes the minimal
beam radius in transverse direction, which is realized at z = 0. zR is the Rayleigh
range and is half the size of the focal region in z direction. Φnm is an additional
z-dependent phase and called �Gouy phase�. For a given z position, R(z) is the phase
front curvature and w(z) is the beam radius.

Note that this basis system is only a convenient description if the focus is situated
at z = 0. In the following, we always choose our coordinate system so that this is
the case.

1signs adapted to the sign convention used here; see chapter 3.1
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3.3.1. Ultrashort Pulses

If the driving �eld is an ultrashort pulse, the spectrum is broad, i.e. the driving �eld is
constituted of many frequency components Ẽ(r, ω), which in turn are superpositions
of Gauss-Hermite modes. Inserting the decomposition in Gauss-Hermite modes, the
ansatz (3.7) for one electric �eld component becomes

Ei(r, t) =
1

2π

∫ (∑
nm

Anm(ω) GHnm,ω(r)

)
︸ ︷︷ ︸

Ẽ(r,ω)

e−iωtdω. (3.16)

To fully describe a general spectrally broad driving �eld, all coe�cients Anm(ω) must
be known, which is impractical. Therefore, we make a simpli�cation and assume that
each frequency component consists of the same superposition Mω(r) of modes:

Ei(r, t) =
1

2π

∫
F (ω)

(∑
nm

Anm GHnm,ω(r)

)
︸ ︷︷ ︸

Mω(r)

e−iωtdω, (3.17)

i.e. we assume that Anm(ω) can be decomposed into two terms where one accounts
for the time dependence and one for the spatial shape:

Anm(ω) = F (ω)Anm. (3.18)

Now, only the parameters Anm and F (ω) are needed for a description of the
driving �eld. For F (ω), we can use a similar approach to [27] and take over the
Fourier coe�cients of a given pulse shape E(t):

F (ω) = Ft {E(t)} (ω) (3.19)

Then, Ei(r, t) reproduces the pulse shape E(t) up to a prefactor at the origin r = 0.
This can be shown easily. At the origin, Mω(r) does not depend on ω:

Mω(0) =
∑
nm

Anm GHnm,ω(0) =
∑
nm

AnmHn (0)Hm (0) = M0 (3.20)

So, (3.21) becomes

Ei(0, t) =
1

2π

∫
F (ω)M0 e

−iωtdω =

= M0 F−1t {F (ω)} (t) = M0E(t)

(3.21)

This means that now we can specify a driving �eld by giving its spatial shape by
coe�cients Anm and the temporal pulse shape E(t) at the origin. The temporal pulse
shape is in general position-dependent. In many cases, however, this only manifests in
a shift of the carrier-envelope (CE) phase, while the envelope is position-independent.
Distortions even of the envelope can occur for few-cycle pulses and tight focusing.
Note that for some superpositions of modes, the prefactor M0 may be zero, i.e.

Ei(0, t) = 0. Then the given pulse shape E(t) is not reproduced exactly at any
position.
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3.3.2. Elliptically Polarized Driving Field

In absence of a medium, the electric �eld components Ei(r, t) and Ey(r, t) are inde-
pendent. Therefore, for the case of a driving �eld with general polarization, we have
two sets of coe�cients {Fx(ω), Ax,nm} and {Fy(ω), Ay,nm}:

Ex(r, t) =
1

2π

∫
Fx(ω)

(∑
nm

Ax,nm GHnm,ω(r)

)
︸ ︷︷ ︸

Mx,ω(r)

e−iωtdω

Ey(r, t) =
1

2π

∫
Fy(ω)

(∑
nm

Ay,nm GHnm,ω(r)

)
︸ ︷︷ ︸

My,ω(r)

e−iωtdω

Ez(r, t) = 0

(3.22)

with

Fx(ω) = Ft {Ex(t)} (ω),

Fy(ω) = Ft {Ey(t)} (ω).
(3.23)

However, as further simpli�cation, we can assume that we have only time-dependent,
but not position-dependent polarization. This means that for each frequency com-
ponent, both the x and the y component of the electric �eld are constituted of the
same superposition of Gauss-Hermite modes, i.e.

Ax,nm = Ay,nm = Anm ∀n,m ∈ N0. (3.24)

This allows us to write (3.22) in a more compact form:

E(r, t) =
1

2π

∫
F (ω)

(∑
nm

Anm GHnm,ω(r)

)
︸ ︷︷ ︸

Mω(r)

e−iωtdω
(3.25)

with
F (ω) = Ft {E(t)} (ω) (3.26)

and

E(t) =

 Ex(t)
Ey(t)

0

 . (3.27)

3.3.3. Normalization

The function E(t) allows to specify the temporal shape of the pulse and determines
also the total pulse energy of the driving �eld. However, it is not clear yet how to
scale this function in order to obtain a given pulse energy Epulse. To achieve this, we
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make an ansatz using a positive real scaling prefactor E0 and a normalized temporal
pulse shape Ê(t):

E(t) = E0Ê(t) with

∫
|Ê(t)|2dt = 1 (3.28)

The pulse energy is the power integrated over time, which in turn can be obtained
from the intensity in the z = 0 plane:

Epulse =

∫
dt P (t) =

∫
dt

∫∫
dxdy I(x, y, t) =

=

∫
dt

∫∫
dxdy

cnε0
2
|E(x, y, 0, t)|2 =

=
cnε0

2

∫∫
dxdy

∫
dt |E(x, y, 0, t)|2

(3.29)

Using the Plancherel theorem, this becomes

Epulse =
cnε0

2

∫∫
dxdy

1

2π

∫
dω

∣∣∣∣∣F (ω)

(∑
nm

Anm GHnm,ω(r)

)∣∣∣∣∣
2

=

=
cnε0

2

1

2π

∫
dω |F (ω)|2

∫∫
dxdy

∣∣∣∣∣∑
nm

Anm GHnm,ω(r)

∣∣∣∣∣
2

.

(3.30)

Using the x-y-plane orthonormality of the Gauss-Hermite modes, this can be writ-
ten as

Epulse =
cnε0

2

1

2π

∫
dω |F (ω)|2 ·

∑
nm

|Anm|2 , (3.31)

which is the same as, again using the Plancherel theorem,

Epulse =
cnε0

2
·
∫

dt |E(t)|2 ·
∑
nm

|Anm|2 =

=
cnε0

2
· |E0|2 ·

∑
nm

|Anm|2 .
(3.32)

Therefore, to get a driving �eld with a given pulse energy Epulse, a given temporal

pulse shape Ê(t) and a spatial mode determined by Anm, we can choose the scaling
prefactor as

E0 =

√
2Epulse

cnε0 ·
∑

nm |Anm|
2 (3.33)
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3.3.4. E�ects of the Gas Target

In the previous treatment, we assumed a constant refractive index n to account
for a medium in which the driving �eld propagates. This is a very simple model
that may not be su�cient in many cases. The gas target consists of neutral atoms,
ionized atoms and a plasma of free electrons. How these three components a�ect
the refractive index depends on their respective density, which in turn depends on
the ionization fraction. The ionization fraction may not only be spatially dependent,
but can also change over time.
In principle, to compute the refractive index of a mixture of di�erent components,

one needs to model the (linear) polarization response of this mixture. We can use
the fact that the polarization density is additive:

P total(r, t) = P neutral(r, t) + P ions(r, t) + P plasma(r, t).

Inserting P = χE, where χ is the susceptibility, and cancelling E, we get

χtotal(r, t) = χneutral(r, t) + χions(r, t) + χplasma(r, t).

From the total susceptibility, we can easily obtain the total refractive index of the
mixture:

ntotal(r, t) =
√
εrµr ≈

√
εr =

√
1 + χtotal(r, t) =

=
√

1 + χneutral(r, t) + χions(r, t) + χplasma(r, t)

Here, we currently make the following assumptions:

• The contribution of the ionized atoms can be neglected, i.e. χions(r, t) = 0. As
the electrons of an ion are in general bound more tightly, the photon energy
needed to induce a transition is signi�cantly higher. As the susceptibility of
an atom at a certain frequency is mainly determined by nearby resonances,
it is justi�ed to neglect the contribution of ionized atoms compared to the
contribution of the neutral atoms for the usual regime (infrared driving �eld).

• The temporal dependence of the refractive index is neglected totally. This is
only valid for very small ionization fractions where the plasma does not play
a role, or if there is a constant background of ionized atoms that does not
change within the time scale of one pulse. The Lewenstein formula (2.3) we
used neglected the depletion of the ground state, which is also only justi�ed if
this is the case.

• The spatial dependence of the refractive index in direction transverse to the
optical axis is neglected. As the driving beam is usually tightly focused to
gain a high peak intensity, it only hits a small area of the gas jet. Within this
area, the gas density can be assumed to be constant. However, the ionization
fraction may change signi�cantly over this length scale, so again we need to
assume a small ionization fraction so that this e�ect does not play a role.
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• The spatial dependence of the refractive index in direction of the optical axis
is neglected. For this, we need to add the assumption that the gas density is
constant in this direction, which is often not the case (compare �gure 3 in [11]).
Rather the gas density in z direction drops slowly to zero at the edges.

After making these assumptions, we can write the total refractive index as

nt(r, t) = nt =
√

1 + χn + χpl.bg. ∀r, t

with the susceptibility χn of the neutral gas component and χpl.bg. of the plasma
background. The susceptibility of the neutral gas can be computed from the refrac-
tive index of the pure gas for which there exists easily available data (e.g. [7]), using
the formula

χn = εr,n − 1 =
√
εr,n · 1

2 − 1 ≈ n2pure − 1.

The susceptibility of the plasma background component depends on the plasma
frequency ωp as given by (see [8])

χpl.bg. = εr,p − 1 = −
ω2
p

ω2
, (3.34)

where the plasma frequency is

ωp =

√
Nee2
ε0me

with the electron density Ne.
A more rigorous treatment of the driving �eld is possible and also necessary for

many applications, but will need some more e�ort, which is out of the scope of this
thesis (for a short overview see chapter 5).

3.4. Build-up of the Harmonic Beam

In order to examine the build-up of harmonic radiation within the gas target, we
start with the macroscopic Maxwell equations without free charges and currents:

∇ ·D = 0,

∇ ·B = 0,

∇×E = −∂B
∂t

,

∇×H =
∂D

∂t
.

(3.35)

In order to make use of these equations, we need to �nd proper relationships between
the quantities E and D as well as between H and B. In linear media, these are

D = ε0εrE,

B = µ0µrH,
(3.36)
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where εr = 1 + χ with the electric susceptibility χ. For HHG, the gas target is a
non-linear medium however. To account for this, we need to add a term P nl for the
polarization density due to the non-linear dipole response of the atoms:

D = ε0εrE + P nl (3.37)

The polarization density can be written as P nl = N ·dnl with the atomic density
N and the atomic dipole moment dnl, which can be calculated using the Lewenstein
model as described before.
For the magnetic �eld B, we neglect the induced magnetization totally and assume
µr = 1.

Using these formula, we can now derive the wave equation. For this, we compute
the following expression:

∇× (∇×E)
(3.35)

= ∇×
(
−∂B
∂t

)
(3.36)

= −µ0µr
∂

∂t
(∇×H)

(3.35)
=

(3.35)
= −µ0

∂2D

∂t2
(3.37)

= −ε0εrµ0
∂2E

∂t2
− µ0

∂2P nl

∂t2

For the left hand side, we can use the vector identity

∇× (∇×E) = ∇ (∇ ·E)−∆E.

Using (3.37), we get

∇ ·E =
1

ε0εr
(∇ ·D −∇ ·P nl) ,

where we have ∇ ·D = 0 according to (3.35) and the term ∇ ·P nl can also be
neglected compared to ∆E. Making this approximation, the left hand side becomes

∇× (∇×E) = ∇0−∆E = −∆E.

Together with the right hand side and using ε0µ0 = 1/c2 as well as the refractive
index n =

√
εr · 1, we get the wave equation

∆E =
n2

c2
∂2E

∂t2
+ µ0

∂2P nl

∂t2
. (3.38)

To solve this equation, we use the ansatz

E(r, t) = U(r, t) · eik(ω)z, (3.39)

with k(ω) = n(ω) ·ω/c. Inserting this ansatz into the left hand side of the wave
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equation yields

∆E =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)(
U · eik(ω)z

)
=

= ∆⊥U · eik(ω)z +
∂

∂z

(
∂U

∂z
· eik(ω)z + U · ik(ω)eik(ω)z

)
=

= ∆⊥U · eik(ω)z +
∂2U

∂z2
· eik(ω)z + 2 · ∂U

∂z
· ik(ω)eik(ω)z + U · (ik(ω))2eik(ω)z =

=

(
∆⊥U +

∂2U

∂z2
+ 2ik(ω) · ∂U

∂z
− k2(ω)U

)
· eik(ω)z =

=

(
∆⊥U +

∂2U

∂z2
+ 2ik(ω) · ∂U

∂z
− n2ω2

c2
U

)
· eik(ω)z

The right hand side of the wave equation can be written as

n2

c2
∂2E

∂t2
+ µ0

∂2P nl

∂t2
=

(
n2

c2
∂2U

∂t2
+ µ0e

−ik(ω)z · ∂
2P nl

∂t2

)
· eik(ω)z.

Writing both sides together we get

∆⊥U +
∂2U

∂z2
+ 2ik(ω) · ∂U

∂z
− n2ω2

c2
U =

n2

c2
∂2U

∂t2
+ µ0e

−ik(ω)z · ∂
2P nl

∂t2
.

Finally, if we Fourier transform the equation in t, we get(
∆⊥ +

∂2

∂z2
+ 2ik(ω) · ∂

∂z
− n2ω2

c2
− n2

c2
(iω)2

)
U(r, ω) = (iω)2Ft

{
µ0e
−ik(ω)z ·P nl

}
⇒
(

∆⊥ +
∂2

∂z2
+ 2ik(ω) · ∂

∂z

)
U(r, ω) = −ω2µ0e

−ik(ω)z · Ft {P nl}

Due to the ansatz (3.39) which factors out the rapidly oscillating term of the electric
�eld, the variation of U in z direction can be assumed to be very slow, so we can
neglect the ∂2/∂z2 term. This approximation is known as the slowly-evolving-wave
approximation (see [4]). Then, by dividing by 2ik(ω), we arrive at the �rst-order
propagation equation

∂U

∂z
=

i

2k(ω)
∆⊥U +

iω2µ0
2k(ω)

· e−ik(ω)z · Ft {P nl} . (3.40)

For given initial conditions, this equation has a unique solution. We demand

E(r, ω)
!

= 0 for z = zmin, (3.41)

as initial condition, because our ansatz together with the slowly-evolving wave ap-
proximation restricts us to propagation in positive z direction, and no harmonic
radiation is generated before the starting position zmin of the gas target.
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In order to account for absorption of the harmonics within the gas target, we can
use a complex refractive index n = nr + iκ where nr is the real refractive index and
κ is related to the absorption coe�cient α of the Beer-Lambert law I = I0 exp (−αz)
as follows:

α =
4πκ

λ
(3.42)

There are several di�erent ways in which the �rst-order propagation equation
(3.40) can be solved numerically. One way would be to solve it iteratively using a
simple �nite di�erence method

U(x, y, z + ∆z, ω) ≈ U(x, y, z, ω) + ∆z · ∂U
∂z

.

However, we can also further simplify the equation before solving it. We arrive at a
closed formula if the ∆⊥U term of (3.40) is neglected � this term is responsible for
the di�raction of the harmonic radiation within the gas target, so if the gas target
is thin enough, it is a valid approximation to leave it out:

∂U

∂z
=
iω2µ0
2k(ω)

· e−ik(ω)z · Ft {P nl} . (3.43)

As can be easily seen, for the given initial condition the solution is

U(x, y, z, ω) =

∫ z

zmin

dz′
iω2µ0
2k(ω)

· e−ik(ω)z′ · Ft {P nl} (x, y, z′, ω),

or, if we plug this into our ansatz,

E(x, y, z, ω) = eik(ω)z
∫ z

zmin

dz′
iω2µ0
2k(ω)

· e−ik(ω)z′ · Ft {P nl} (x, y, z′, ω) =

= einωz/c
∫ z

zmin

dz′
iω2µ0c

2nω
· e−inωz′/c · Ft {N ·dnl} (x, y, z′, ω)

=
i

2

ω

c

1

n
µ0c

2 · N · einωz/c
∫ z

zmin

dz′ · e−inωz′/c · Ft {dnl} (x, y, z′, ω)

Using c2 = 1/(µ0ε0) we get

E(x, y, z, ω) =
i

2ε0c

ωN
n
· einωz/c

∫ z

zmin

dz′ · e−inωz′/c · Ft {dnl} (x, y, z′, ω) (3.44)

which can be computed e.g. using the trapezoidal rule for numerical integration.

An alternative approach to solving the �rst-order propagation equation (3.40) with-
out neglecting the ∆⊥ term would be to do a two-dimensional spatial Fourier trans-
formation on the x and y coordinates so that we get

∂Ũ

∂z
=

i

2k(ω)

(
(ikx)2 + (iky)

2
)
Ũ +

iω2µ0
2k(ω)

· e−ik(ω)z · Fxy {Ft {P nl}} . (3.45)
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where Ũ := Fxy {U}. This can be written as

∂Ũ

∂z
= A · Ũ +B(z)

with the de�nitions

A(kx, ky, ω) :=
i

2k(ω)

(
(ikx)2 + (iky)

2
)

B(kx, ky, ω; z) :=
iω2µ0
2k(ω)

· e−ik(ω)z · Fxy {Ft {P nl}} .

For the initial conditions given previously, this di�erential equation has the solution

Ũ(kx, ky, z, ω) = eA(kx,ky ,ω) · z
∫ z

zmin

dz′ B(kx, ky, ω; z′) · e−A(kx,ky ,ω) · z′

as can be seen easily by substituting the term into the equation. This approach would
need some more computing power, as a Fourier transformation must be calculated
for each value of z′, but it would be easy to implement and allow us to account for
the di�raction of the harmonics within the gas target.

3.5. Far Field Distribution of the Harmonic Radiation

Using the far-�eld approximation, we want to compute the harmonic �eld distribution
on a far-away plane given the �eld distribution right after the gas target. According
to (7.27) and (7.29) from [19], the far �eld can be calculated using

U(x, y, z) = −2πi (kz/r)
eikr

r
F (kx/r, ky/r) (3.46)

with the de�nitions

r =
√
x2 + y2 + z2

and

F (kx, ky) = Fxy {U(x, y, 0)} (kx, ky),

where the harmonic radiation U(x, y, z) is assumed to be given at z = 0.

However, if the �eld is given in a plane z = zt due to the position of the target,
we must write down these equations in a shifted coordinate system and transform
them back to the conventional one, and obtain

U(x, y, z) = −2πi
k(z − zt) · eikr

r2
F (kx/r, ky/r) (3.47)

r =
√
x2 + y2 + (z − zt)2 (3.48)
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Figure 3.1.: Orientation and Position of Screen Plane

F (kx, ky) = Fxy {U(x, y, zt)} (kx, ky). (3.49)

Now, we want to compute the positions (x, y, z) corresponding to screen coordinates
(xs, ys). For this, we assume that the screen is at distance d from the origin and
parallel to the x-y-plane. To be able to model arbitrary oriented screen planes, one
can optionally rotate the screen around the origin using a rotation matrix

P = Rx(θ)Ry(φ)Rz(ψ),

which is chosen so that Pex and Pey span the screen plane (see �gure 3.1). Here,
Ri(α) denotes a rotation matrix rotating around the i-th axis with an angle of α.
Then, the transformation from screen coordinates to conventional coordinates is x

y
z

 = P

 xs
ys
d

 . (3.50)

Using equations (3.47) to (3.49) and (3.50), we can now approximate the harmonic
�eld at a point (xs, ys) of the screen.

3.6. Fluorescent Screen

Often, a �uorescent screen is used in experiments to make the harmonic radiation
visible. If the wavelength-dependent conversion e�ciency of the screen material is
known, it is easy to model the light conversion process.
From the previous considerations, we already can compute the complex electric

�eld amplitude Eh(r ∈ P, ω) of the harmonics within a far away screen plane P .
The spectral intensity of the harmonic radiation can be calculated using

Ih(r, ω) =
ε0c

2
|E(r, ω)|2 . (3.51)

28



..

Figure 3.2.: Ratio between unit surfaces

This can also be written as spectral energy density N(ω)h̄ω per unit time t and per
unit surface Aoa which is perpendicular to the optical axis, where N(ω) is a spectral
number density of photons:

Ih =
N(ω) · h̄ω
Aoat

The conversion e�ciency η(ω) of the screen material is the fraction of incoming
photons that are converted by the �uorescence process to photons with an angular
frequency of ωf . Using this, we can write the spectral radiant exitance of the con-
verted light on the screen, i.e. the power that is emitted per unit surface As of the
screen, as

Mf =
η(ω)N(ω) · h̄ωf

Ast
.

As can be seen in �gure 3.2, the unit surfaces Aoa and As are related as

Aoa

As
= cosα,

where α is the angle between the optical axis and the screen plane normal, so that
we can write

Mf = η(ω)
ωf
ω

Aoa

As
· n · h̄ω
Aoat

= η(ω)
ωf
ω

cosα · Ih

So, plugging in (3.51), we get a spectral radiant exitance of

Mf (r, ω) = η(ω)
ωf
ω

cosα · ε0c
2
|E(r, ω)|2 =

=
ε0cωf cosα

2
· η(ω)

ω
|E(r, ω)|2

(3.52)

3.7. Di�raction Grating

For experiments that use a grating for analyzing XUV radiation or experiments that
use an intra-cavity grating for XUV output coupling from enhancement cavities, it
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is necessary to simulate the e�ect of a di�raction grating on the observed XUV far
�eld distribution.
To simulate a di�raction grating, several things have to be considered. First, there

are re�ective and transmissive gratings. Second, these gratings can be blazed, i.e.
the lines have a 3D structure that allows optimizing the re�ectivity for a certain
direction. Third, the grating e�ciency is usually wavelength-dependent. Moreover,
it can be polarization-dependent.
For the calculations, the following assumptions and simpli�cations are made:

• The grating is transmissive. This assumption can be removed easily after the
calculation is done as transmissive and re�ective gratings behave very similar.

• The lines have no structure, i.e. the grating is not blazed nor do the lines have
inhomogenous transmission or phase shift.

• The wavelength dependence of the transmission is neglected.

• The incoming light, and therefore the di�racted light, is assumed to be linearly
polarized in direction of the grating lines.

Using these assumptions, we will �rst derive a three-dimensional grating equa-
tion for an indicent plane wave. Then we will consider the case of an arbitrarily
positioned and oriented grating. After that, we can treat a general monochromatic
�eld distribution by decomposing it into plane waves. This also allows to treat non-
monochromatic radiation by repeating the procedure for each frequency component.
Finally, a far �eld approximation can be applied to get the �eld within a far away
plane after the grating.

3.7.1. 3D Grating Equation

We choose a 3D coordinate system so that the grating lies within the x-y-plane,
and we assume the grating lines to be parallel to the y direction. We consider an
incoming plane wave with wavenumber k, kz > 0. We use the following ansatz for
the complex electric �eld E:

E(r, t) = U(r)e−iωt

As we assume linear polarization, we only consider one component of the full electric
�eld vector E. The incoming plane wave is then described by

Ui(r) = eik · reiφ0 , (3.53)

where eiφ0 is a constant phase factor and k = |k| is related to ω according to the
dispersion relation.
Now, we only concentrate on the x-y-plane. The incoming wave inside this plane

is described by

Ui,2D(x, y) = Ui (r = (x, y, 0)) = ei(kxx+kyy)eiφ0 .
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At the positions of the grating lines, the light can pass, while light is blocked between
the lines. This can be expressed using a spatially dependent transmission coe�cient

T (x, y) =
∑
n

δ(x− nd),

where d is the spacing of the lines. The light di�racted by the grating directly after
the x-y plane can be written as

Ud,2D(x, y) = Ui,2D(x, y) ·T (x, y). (3.54)

Using a two-dimensional spatial Fourier transform and its inverse, formula (3.54) can
be written as

Ud,2D(x, y) = F−1xy {Fxy {Ui,2D ·T}} =

= F−1xy
{
Fxy {Ui,2D} (k′x, k

′
y) ∗ Fxy {T} (k′x, k

′
y)
}
,

where ∗ denotes convolution. Inserting the Fourier transforms

Fxy {Ui,2D} (k′x, k
′
y) = eiφ0(2π)2δ(k′x − kx)δ(k′y − ky)

Fxy {T} (k′x, k
′
y) =

∑
m

δ(k′x −m · 2π/d)

into this expression we obtain
Ud,2D(x, y) =

= F−1xy

(
eiφ0(2π)3δ(k′x − kx)δ(k′y − ky) ∗

∑
m

δ(k′x −m · 2π/d)

)

=
∑
m

F−1xy
(
eiφ0(2π)2δ(k′x − kx)δ(k′y − ky) ∗ δ(k′x −m · 2π/d)

)
=
∑
m

F−1xy
(
eiφ0(2π)2δ(k′x −m · 2π/d− kx)δ(k′y − ky)

)
=
∑
m

ei((kx−m · 2π/d)x+kyy)eiφ0 =

=
∑
m

ei(k
′
x,mx+k

′
yy)eiφ0

This is a superposition of plane waves within the x-y-plane, with wavenumbers

(k′x,m, k
′
y) = (kx −m · 2π/d, ky) = (kx, ky)−m · 2π/d · ex. (3.55)

As we know that the light that passes the grating still has the same wavelength, we
can easily reconstruct the 3D �eld from the 2D �eld by completing the wave vector

with k′z,m =
√
k2 − k′2x,m − k′2y . Then we get the 3D �eld of the di�racted light

Ud(r) =
∑
m

eik
′
mreiφ0 with k′m =

(
k′x,m, k

′
y,
√
k2 − k′2x,m − k′2y

)>
,
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where k′z,m is chosen such that |k′m| = |k| and k′z,m > 0. The summation index m is
the di�raction order.

In the following, we will consider only light for one di�raction order and therefore
omit the summation:

Ud,m(r) = eik
′
mreiφ0 (3.56)

So what happens when a plane wave passes a grating can be summarized as follows
(see �gure 3.3):

• For a given di�raction order, the light that passes the grating is a plane wave
too.

• If we look at the wavenumber k of the incident and k′ of the di�racted plane
wave, the components parallel to the grating are related as2

k′‖ = k‖ −∆k‖

where ∆k‖ is parallel to the grating and perpendicular to the grating lines and
the norm is given by

|∆k‖| = m · 2π/d

• The component of k′ that is perpendicular to the grating plane must be chosen
so that |k′| = |k|, i.e.

k′⊥ =
√
k2 − k2

‖

• At the origin r = 0, the complex �eld amplitude of the incident plane wave
and of the di�racted plane wave is the same3:

Ud(r = 0) = Ui(r = 0) = eiφ0

3.7.2. Arbitrarily Positioned and Oriented Grating

Now we consider a grating that is at an arbitrary position in space and is arbitrarily
rotated (see �gure 3.4). The position at which the z axis intersects the grating plane
is called z0. The orientation of the grating is described by a rotation matrix

G = Rx(θ)Ry(φ)Rz(ψ)

which is chosen so that Gex and Gey span the grating plane and Gey is parallel to
the grating lines. Here, Ri(α) denotes a rotation matrix rotating around the i-th
axis with an angle of α.
As we want to apply a far �eld approximation later, we will also choose a coordinate

2compare to (3.55)
3compare to (3.53) and (3.56)
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Figure 3.3.: 3D Grating Equation

.

Figure 3.4.: Orientation and position of grating
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system {Dex, Dey, Dez} which is described by a rotation matrix D. This coordinate
system can be chosen later so that the di�racted beam for a given di�raction order
is collimated around the Dez axis.
In contrast to the previous calculation, where we calculated the di�racted plane

wave from the incoming plane wave, we will do it the other way round here: We start
with a di�racted plane wave given in the coordinate system de�ned by D and want
to calculate the corresponding incoming plane wave in the conventional coordinate
system. The reason is that this is more convenient to implement, as will become
apparent later.
The wave vector of the di�racted plane wave in D coordinates is called k̃. First,

we need to calculate the components of the wave vector in grating coordinates G, so
that we can apply ∆k‖ as described previously:

kd,G = G>Dk̃ (3.57)

Then, we add back the ∆k‖ that was subtracted at the grating to get the in-plane
components of the wave vector of the incident plane wave:

ki‖,G = kd‖,G + ∆k‖ with ∆k‖ = (m · 2π/d, 0)> (3.58)

After that, we can reconstruct the component of the wave vector that is perpendic-
ular to the grating plane analogously to what we did when deriving the 3D grating
equation:

ki⊥,G =
√
k2 − k2

i‖,G (3.59)

Now that we have ki‖,G and ki⊥,G we know the full wave vector ki,G of the incident
plane wave in grating coordinates. Finally, we can compute the coordinates of this
wave vector in conventional coordinates:

ki = Gki,G (3.60)

Using (3.57) to (3.60), we know how the wave vector ki of incident and k̃ of
the di�racted plane wave relate. To fully describe a plane wave, it is however also
necessary to know the phases. For the incident plane wave, we use the ansatz

Ui(r) = eik · reiφ0 , (3.61)

while for the di�racted plane wave we write, using di�racted beam coordinates rD,

Ũ(rD) = eik̃ · rDeiφ̃0 . (3.62)

Now we use the fact that at the origin of the grating coordinate system, both waves
must have the same phase (see 3.7.1). In conventional coordinates, the origin of the
grating coordinate system lies at z0ez. In di�racted beam coordinates, it lies at 0.
So we demand

Ui(z0ez)
!

= Ũ(0)
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⇒ eik · z0ezeiφ0 = eik̃ ·0eiφ̃0

From this, we can get a relation between the phase φ0 of the incident plane wave
and φ̃0 of the di�racted plane wave:

eiφ̃0 = eikzz0eiφ0 . (3.63)

3.7.3. Decomposition of the Indicent Field into Plane Waves

Our goal is to compute what the grating does to the harmonic radiation coming from
the gas target, as calculated in chapter 3.4. For this, we can decompose the incoming
harmonic radiation into its frequency components and then into plane waves, which
we can handle with the formulas provided in chapter 3.7.2.
Provided that the incoming electric �eld Ei(r, t) is given, the decomposition into

frequency components is given by a time-domain inverse Fourier transform

Ei(r, t) =
1

2π

∫
dωEi(r, ω)e−iωt. (3.64)

In the following we restrict ourselves to one frequency component ω and set
Ui(r) := Ei(r, ω). This can be further decomposed into plane waves exp (i(kxx+ kyy + kzz))
with wave numbers k=(kx, ky, kz)

>, where |k| = k(ω) is given by the dispersion re-
lation. This decomposition can be written as

Ui(r) = Ui(x, y, z) =

∫∫
F 3D(kx, ky) ei(kxx+kyy+kzz) dkxdky (3.65)

with kz =
√
k2(ω)− k2x − k2y and coe�cients F 3D(kx, ky).

Now, assuming that Ui(r) is given in an x-y-plane behind the gas target at z = zt,
we can also do a two-dimensional Fourier expansion of Ui(x, y, z = zt):

Ui(x, y, zt) = (2π)−2
∫∫

F (kx, ky) ei(kxx+kyy) dkxdky, (3.66)

where the coe�cients F (kx, ky) can be computed easily with a Fourier transform:

F (kx, ky) = Fxy {Ui(x, y, zt)} (3.67)

As both (3.65) and (3.66) should yield the same result for z = zt, we get the relation

(2π)−2F (kx, ky) = F 3D(kx, ky) · eikzzt .

From this, we obtain the plane wave coe�cients

F 3D(kx, ky) = (2π)−2F (kx, ky) · e−ikzzt . (3.68)

Now that we have decomposed the incident radiation into plane waves with known
coe�cients F 3D(kx, ky) = A · eiφ0 , we can apply the grating to the individual plane
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waves.
The coe�cients transform according to (3.63) as

F 3D(kx, ky) = A · eiφ0 7→ A · eiφ̃0 = F 3D(kx, ky)e
ikzz0 ,

and the plane wave according to (3.61) and (3.62) as

ei(kxx+kyy+kzz) 7→ eik̃ · rD .

Modifying equation (3.65) accordingly yields the harmonic �eld after the grating

Ud(rD) =

∫∫
F 3D(kx, ky) e

ikzz0eik̃ · rD dkxdky
(3.68)

=

(3.68)
=

∫∫
(2π)−2F (kx, ky)e

−ikzzteikzz0eik̃ · rD dkxdky

From this, we can compute the �eld in the plane with zD = 0:

Ud(xD, yD, zD = 0) =

∫∫
(2π)−2F (kx, ky) · eikz(z0−zt) ei(k̃xxD+k̃yyD) dkxdky

The term ei(k̃xxD+k̃yyD) looks like the exponential term of a Fourier transformation,
however the integration variables kx and ky do not �t. Using a variable transfor-
mation (kx, ky) 7→ (k̃x, k̃y), we can rewrite the integral as a two-dimensonal inverse
Fourier transform:

Ud(xD, yD, zD = 0) =

=

∫∫
(2π)−2F (kx, ky) · eikz(z0−zt) ei(k̃xxD+k̃yyD)

∣∣∣J(k̃x, k̃y)
∣∣∣dk̃xdk̃y =

= F−1xy
{
F (kx, ky) · eikz(z0−zt)

∣∣∣J(k̃x, k̃y)
∣∣∣}

(3.69)

Here, J(k̃x, k̃y) is the Jacobi matrix of the transformation. Its value is

J = 12×3G



∂c1

∂k̃x

∂c1

∂k̃y
∂c2

∂k̃x

∂c2

∂k̃y

−
c1

∂c1
∂k̃x

+ c2
∂c2
∂k̃x√

k2 − c21 − c22
−
c1

∂c1
∂k̃y

+ c2
∂c2
∂k̃y√

k2 − c21 − c22


(3.70)

with the de�nitions

c1 := b11k̃x + b12k̃y + b13k̃z +m · 2π/d
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⇒ ∂c1

∂k̃x
= b11 − b13

k̃x

k̃z

⇒ ∂c1

∂k̃y
= b12 − b13

k̃y

k̃z

c2 := b21k̃x + b22k̃y + b23k̃z

⇒ ∂c2

∂k̃x
= b21 − b23

k̃x

k̃z

⇒ ∂c2

∂k̃y
= b22 − b23

k̃y

k̃z(
b11 b12 b13
b21 b22 b23

)
:= 12×3G

>D

k̃z =
√
k2 − k̃2x − k̃2y

3.7.4. Far-Field Approximation for a Flat Screen

We can safely assume that one frequency component of the incident beam is still
collimated after it is di�racted by the grating, but in a di�erent direction. If we
choose the di�racted beam coordinate system in a way so that the di�racted beam
is collimated around the z axis of this coordinate system, we can again apply the
far-�eld approximation to obtain the �eld at a screen plane that is su�ciently far
away from the grating.
For this, we assume that (xD, yD, zD) is the position of a point in the screen plane

where we want to compute the �eld, given in the di�racted beam coordinate system.
Then, in analogy to (3.46), we get the far �eld

U�(xD, yD, zD) = −2πi (kzD/r)
eikr

r
F�(kxD/r, kyD/r) (3.71)

with the radius

r =
√
x2D + y2D + z2D

and the two-dimensional Fourier transform

F�(k̃x, k̃y) = Fxy {Ud(xD, yD, zD = 0)} (k̃x, k̃y)
(3.69)

=

(3.69)
= Fxy

{
F−1xy

{
F (kx, ky) · eikz(z0−zt)

∣∣∣J(k̃x, k̃y)
∣∣∣}} =

= F (kx, ky) · eikz(z0−zt)
∣∣∣J(k̃x, k̃y)

∣∣∣
(3.72)

It is important to choose the di�racted beam coordinate system, i.e. the matrix
D, such that the di�racted beam is collimated around the Dez direction, otherwise
the far-�eld approximation is not valid. We assume that the incoming harmonic

37



radiation is collimated around the z axis. Therefore we look at an incoming plane
wave that propagates along the optical axis, i.e. has a wave vector kez, and compute
the di�racted plane wave. This can be done by applying (3.57) to (3.60) in reverse
order. In conventional coordinates, this plane wave is di�racted as

kez 7→ kdz with dz := G

 G31 −m2π
d /k

G32√
1− (G31 −m2π

d /k)2 −G2
32

 . (3.73)

Now we can choose any unitary matrix D = (dx,dy,dz) to get a valid di�racted
beam coordinate system. A convenient choice for implementing would be dy := Gey
and dx := dy × dz.

To compute the harmonic �eld at a screen plane after the grating, we also need
a way to compute the positions (xD, yD, zD) corresponding to screen coordinates
(xs, ys). For this we assume like in chapter 3.5 that the screen is at a distance d from
the origin of the grating coordinate system, and is rotated around this position with
a rotation matrix

P = Rx(θ)Ry(φ)Rz(ψ),

which is chosen so that GPex and GPey span the screen plane, i.e. the angles θ,
φ and ψ are relative to the grating coordinate system. Here, Ri(α) again denotes a
rotation matrix rotating around the i-th axis with an angle of α.

Then, the transformation from screen coordinates to di�racted beam coordinates
is  xD

yD
zD

 = D>GP

 xs
ys
d

 . (3.74)

3.7.5. Summary and Implementation

Now, we have everything together that we need to compute the harmonic radiation
on a far away screen plane after a grating was passed:

• We decompose the incoming harmonic radiation into its frequency components
Ui(x, y, zt) according to (3.64).

• We apply a two-dimensional Fourier transform on the plane according to (3.67)
to get the coe�cients F (kx, ky).

• We use the far-�eld approximation (3.71) to get the harmonic radiation on the
screen plane. For this, we need to

� choose a matrix D with the help of equation (3.73).

� compute the positions of the screen points (xD, yD, zD) using equation
(3.74).
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� evaluate the F� term using (3.72), which involves converting k̃ to k with
(3.57) to (3.60) and computing the Jacobi determinant with (3.70).

For implementing this procedure, the electric �eld has to be discretized in the in-
put plane. The coe�cients F (kx, ky) can then be computed with a Fast Fourier
Transform (FFT).
Also, the output plane must be discretized. This discretization can be converted

to a grid of points (xD, yD, zD) where the far-�eld approximation should be applied.
This grid determines the points (k̃x, k̃y) = (kxD/r, kyD/r) in the reciprocal space at
which F� must be evaluated. After these points are converted to points (kx, ky), we
can do an interpolation in the F (kx, ky) array that was computed with a FFT. This
is the reason why we chose to compute k from k̃ and not the other way round, as it
is easier to implement interpolation in data given on a rectangular grid.
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4. Theoretical and Experimental

Applications

4.1. Single Atom Dipole Response � Comparison with

the TDSE

In order to verify the implemented model for the single atom dipole response, we
compare the obtained dipole spectra with dipole spectra from other sources.

It is di�cult to compare to experimental data, because in experiments there are
always many atoms involved and the measured spectrum is a superpositon of the
individual dipole responses. Therefore, the comparison is done with theoretical data
obtained from a more accurate (but also computationally more expensive) model.

Le et al. produced dipole spectra for xenon solving the three-dimensional time-
dependent Schrödinger equation in single-active electron approximation in [15]. For
this, they used an e�ective atomic potential, while the version of the Lewenstein
model implemented here uses a simple hydrogen-like potential. They simulated the
dipole response of a xenon atom to a cos2 driving pulse with a FWHM of 7.8 fs, a
central wavelength of 1600 nm and a peak intensity of 5 · 1013 W/cm2. Moreover,
they also did a calculation with the Lewenstein model, using dipole matrix elements
corresponding to the same atomic potential as used for the TDSE calculation.

Figure 4.1 shows the results they obtained, in comparison to the results from the
Lewenstein model implemented here. It can be seen that there is good agreement
between all three curves at high frequencies, which veri�es that code implemented
for this thesis is working correclty.

For lower harmonics, the two curves of Le et al. di�er signi�cantly. The reason for
this is that the approximations made in the Lewenstein model are not ful�lled well in
this regime. As mentioned before, it does not describe well lower harmonics that are
near the ionization potential (which is 12.13 eV for xenon), because these harmonics
are produced by electron trajectories that have a low kinetic energy and are nearer to
the core so that assumption of free propagation breaks down, as the electron starts
to feel the long range Coulomb potential of the core. This is discussed in detail in
[15], where also an extension of the Lewenstein model is presented which attempts to
�x this shortcoming. Even if the model does not describe low harmonics well quan-
titatively, it can be used for qualitative considerations in this regime nonetheless.
In many applications, it is most important that phase dependence of the harmon-
ics is modelled correctly, while the absolute frequency-dependent intensity has less
signi�cance.
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Figure 4.1.: Comparison with TDSE results. a) spectra from the TDSE and the
Lewenstein model reproduced from [15]. b) result of a simulation with
the code implemented here using the same driving �eld parameters

It is interesting to see that for low harmonics, even the two curves computed with
the Lewenstein model di�er. This is because di�erent dipole matrix elements are
used which follow from the di�erent atomic potentials.

4.2. Macroscopic Response from a Gas Target

As the gas target consists of many atoms, the macroscopic harmonic radiation re-
sults from the interference of the harmonic radiation of the individual atoms. The
spatial and spectral/temporal properties of the macroscopic response emerge from
this interference.

To achieve a strong harmonic yield, it is important that the interference is construc-
tive. What is important for the magnitude of the harmonic yield is the interference
in direction of the optical axis. This is called phase matching. The interference in
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transverse direction is also important, but mostly a�ects the quality of the emitted
harmonic beam (transverse pro�le, e.g. divergence angle) and not the magnitude.
There are several e�ects that limit phase matching in reality. First, the driving

�eld phase behaves di�erently from a plane wave. In focussed beams, there is a
Gouy phase term that is ampli�ed in the harmonic radiation and leads to a phase
mismatch (geometrical phase matching). Second, the driving �eld intensity may vary
in direction of the optical axis. As the driving �eld intensity a�ects the phase of the
harmonic radiation, this also leads to a phase mismatch. Third, if the driving �eld
and the harmonic radiation have di�erent phase velocities, this will also create a
phase mismatch.
It is desirable to optimize HHG experiments for strong harmonic yield, i.e. for

good phase matching. There are many degrees of freedom that can be used to
achieve good phase matching, two of these are the position of the gas target and
the diameter of the gas jet. The implemented model allows us to study how these
two degrees of freedom a�ect the harmonic yield and can help us to get a better
understanding of some aspects of phase matching. For this, simulations with the
experimental parameters used in [23] were made, which used a pulsed Gaussian
beam with a central wavelength of 1040 nm, a beam waist of 20 µm, a peak intensity
of 1.1 · 1014 W/cm2 and a temporal FWHM of 57 fs to produce high harmonics in
neon. The resulting Rayleigh range of the Gaussian beam is zR = 1.21 mm.
Figure 4.2 shows how the gas jet diameter a�ects the harmonic yield for a gas tar-

get placed directly in the middle of the focus, for the 39th, 45th and 51st harmonic.
As one can see, the power of the harmonic radiation increases with increasing gas jet
diameter, as the interaction volume grows. However, when using gas targets that are
larger than approximately 100 µm, the harmonic yield start to decrease again due
to the destructive interference that comes from the bad phase matching conditions.
So the optimal diameter of the gas jet would be around 100 µm, depending on the
harmonic one wants to optimize. One can clearly see that the harmonic power oscil-
lates with the gas jet diameter due to the phase mismatch. However, the oscillation
decays slowly because of the absorption of the harmonics within the gas target. For
the simulation, a gas density of 2.46 · 1024 m−3 was assumed, which corresponds to
a pressure of 0.1 bar at 22◦C.
Until now, only gas targets placed in the middle of the focus were considered.

It is however also possible to move the target in parallel to the optical axis to see
which region o�ers good phase matching conditions. Figure 4.3 shows the results of
a simulations for di�erent target positions. Each graph shows three curves. There is
one curve for a gas jet with a diameter of 100 µm, one for a gas jet with a diameter of
500 µm and one curve for a very thin gas target (1 µm) that does not exhibit phase
mismatch. The latter is only plotted for theoretical considerations and can most
probably not be realized experimentally. The total harmonic power for the thin gas
target was scaled up with a factor of 1002 = 104 to be able to see which power would
be possible with a 100 µm jet under optimal phase matching. The factor of 1002

was chosen because, for ideal phase matching, the resulting harmonic amplitude is
proportional to the gas jet length under the approximations made in equation (3.44).
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Figure 4.2.: Harmonic yield versus gas jet diameter for a gas target placed directly
in the focus

One can see that for the 1 µm target, the optimal target position is directly in the
focus, which is not surprising as the driving �eld is most intense there. Moreover,
the curve is symmetric with respect to z = 0 because the driving �eld amplitude is
also symmetric, and phase matching e�ects do not play a role here.
For the 100 µm target, the curve gets asymmetric. Although the driving �eld ampli-
tude is symmetric, the Gouy phase term of the driving �eld phase is antisymmetric
(compare to equation 3.11). Because of this, there may be di�erent phase match-
ing conditions before and after the focus so that the generated harmonic power can
be asymmetric with respect to z = 0. The optimal target position is slightly be-
hind the focus. To explain this, one has to consider the di�erent contributions to
the harmonic phase. The di�erent phase velocities of driving �eld and harmonic
radiation are neglected in this simulation, but the Gouy phase of the driving �eld
and therefore of the harmonic radiation decreases with increasing z. Moreover, the
driving �eld intensity increases with z before the focus, and after the focus it drops.
The harmonic phase has a negative dependence on the driving �eld intensity, which
means that the contribution to the harmonic phase which comes from the driving
�eld intensity increases. Therefore, the phase mismatch due to the Gouy phase and
the phase mismatch due to the intensity cancel partially behind the focus and sum
up before the focus, which explains why the highest harmonic power can be produced
behind the focus.
The 500 µm target shows a more complicated behavior. It can be seen that even
though the 100 µm gas jet yields better results than the 500 µm one when both are
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Figure 4.3.: Harmonic yield and e�ect of phase matching for di�erent target posi-
tions. The curve for the 1 µm gas jet was scaled with a factor of 104.
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placed directly in the focus, it is possible to achieve more power with the 500 µm
target if the target position is varied. For example, at the 39th harmonic, nearly 3
times as much power can be achieved. In real experiments, this may not be possible,
however, because additional phase mismatch is introduced by the di�erent phase
velocity of driving and harmonic �eld, which is neglected here.

To quantify how much impact phase matching has for the 100 µm target, we can
compare the power with the up-scaled power we get from the thin target with ideal
phase matching. Typically, one gets powers within the same order of magnitude
when the target is placed at a suitable position, but loses at least a factor of 2 due
to phase mismatch.

4.3. Output Coupling from Enhancement Cavities

4.3.1. Motivation

For several applications, not only a high XUV power is interesting, but also high
repetition rates, either to achieve su�cient tooth spacing in XUV frequency combs
or because the application has an intrinsic limit on the data that can be acquired in
one pass. For example, a MHz repetition rate XUV frequency comb at 60 nm with a
su�cient intensity might enable spectroscopy of the 1S − 2S two-photon transition
in He+ [20]. If it is also possible to achieve isolated attosecond pulses, this would
allow much higher data acquisition rates in pump-probe experiments � e.g. in photo-
electron emission spectroscopy/microscopy, where the single-pass e�ciency is limited
by space-charge e�ects [5]. Another example where a high repetition rate XUV source
is desirable is coincidence spectroscopy, which requires a low event probability in one
singe pass which also leads to large data acquisition times [25].

The most successful approach for high harmonic generation at MHz repetition rates
with su�cient power is to produce the harmonics inside of enhancement cavities.
Enhancement cavities are passive resonators that are seeded by a pulsed input laser
with a repetition rate that �ts the round-trip time of the resonator. Inside the
cavity, it is possible to achieve pulse energies much higher than that of the seeding
laser because the circulating pulse is ampli�ed at each round trip by a seed pulse.
As the conversion e�ciency for HHG is very low, it is in principle possible to place
a gas target inside the cavity and recycle the driving �eld pulse after it hits the gas
target. The main working principle of an enhancement cavity is that there must be
a partially re�ecting mirror, called the input coupler, at which the seeding laser can
enter the cavity with very low loss. For this, the cavity geometry is chosen in a way
so that the circulating beam leaving the cavity through the input coupler interferes
destructively with the part of the seeding pulse that is re�ected by the input coupler
(see �gure 4.4).

One problem that must be solved when producing high harmonics within an en-
hancement cavity is how to get the harmonic radiation, which is emitted collinearly
with the driving laser beam, out of the cavity. So far, there have been several ap-
proaches. The �rst one was to use a intra-cavity plate that is placed at Brewster's
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Figure 4.4.: Working principle of an enhancement cavity

angle for the driving �eld wavelength, so that the circulating driving pulse is trans-
mitted and the harmonic radiation is partially re�ected ([14] and [10]). Another
approach is to use a re�ective grating that re�ects the driving beam at another angle
than the harmonic radiation. This, however, results in the di�erent harmonics to be
angular dispersed.
Another possibility is to drill a tiny hole in the cavity mirror that comes after the

gas target, so that the harmonic radiation can leave the cavity through this hole.
This will lead to losses for the circulating driving laser. However, the divergence
angle of the harmonics can be signi�cantly smaller than that of the driving beam,
so that the hole diameter can be chosen small enough to allow for an acceptable
enhancement.
Building on this idea, one can also use a higher order mode for the driving �eld

in the cavity. This mode can be chosen in a way that it avoids an opening in a
output coupling mirror, but the harmonics are produced in a way that they pass the
opening. This is described in chapter 4.3.2.

4.3.2. HHG in a Quasi-Imaging Resonator

Using the implemented model, it is possible to conduct simulations of HHG with
higher order transverse modes optimized for output coupling in an enhancement
cavity. In order to excite such a mode inside the cavity, it is necessary to adjust
the cavity in a way that multiple Gauss-Hermite modes are resonant at the same
time. In this case, the coe�cients of these modes adapt automatically for minimal
round-trip losses. This is called quasi-imaging [26].
Using the Gauss-Hermite modes GH00 and GH04 and a slit in the output coupling

mirror, it is possible to excite a mode that avoids the slit in the mirror but has a
strong on-axis intensity maximum near the focus. This mode is given by√

3/11 ·GH00 −
√

8/11 ·GH04

and will be called simple slit mode (SSM) in the following. The intensity of this mode
in the y-z-plane is shown in the upper part of �gure 4.6. The on-axis maxiumum can
be seen around the z position ±0.8 mm. Below the �gure, also an on-axis line-cut
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is shown. Directly at the focus (z = 0), the mode exhibits an on-axis minimum but
two o�-axis maxima.

Until now, HHG with higher-order transverse modes has not been extensively
studied, so the question arises whether good phase matching can be achieved at all
with such a mode. The lower part of �gure 4.6 shows the phase of the simple slit
mode, also in comparison to a Gaussian beam with the same beam parameters1. It
can be seen that the phase has a higher slope than this is the case for the Gaussian
beam.

To see whether phase matching is a limiting factor for HHG with the SSM, detailed
simulations with the model implemented here and an experiment were conducted2

that allows to verify the results. In both the simulation and the experiment, har-
monics were produced in a 100 µm xenon gas jet with a backing pressure of 3 bar
using a SSM with a beam waist of 18.8 µm and a central wavelength of 1040 nm.
The intra-cavity pulse duration was 100 fs.

Interesting questions that can be answered by simulations are the detailed shapes
of the harmonic beams for given harmonics, the achievable output coupling e�ciency
and how the phase matching conditions are. Figure 4.7 shows the harmonic beams
for di�erent harmonic numbers and target positions � one time, the target was placed
directly in the focus (z = 0), where the driving �eld has two lobes, and one time
the target was placed at z = ±0.825 mm, which corresponds to the on-axis intensity
maxima. For a target positioned in the focus, one can clearly see a interference
pattern similar to that of a double slit. This is not surprising, since the two lobes of
the SSM at z = 0 emit harmonic radiation in phase, just as like a double slit aperture
would have been placed before a homogenous source of harmonic radiation. For
targets positioned at z = ±0.825 mm, the beam pro�les resemble more a Gaussian
beam. There are still interference patterns due to the side lobes of the driving �eld
that can also be seen in the upper part of �gure 4.6, but most of the power is
generated in the on-axis lobes which leads to the emission of nicer harmonic beams,
especially for the near-cuto� harmonics H17 and H19, where interference between
the short and long trajectory also do not play an important role.

From the beam pro�les, the output coupling e�ciency for a given slit width can
be determined. Figure 4.8 shows the output coupling e�ciencies for di�erent har-
monics versus assumed slit width, together with a curve that shows the round-trip
losses of the circulating driving �eld, under the assumption of a perfect slit, i.e.
all radiation outside the slit width gets re�ected and radiation inside the slit width
gets transmitted. The target was placed at the position z = 0.825 mm. For the
17th harmonic, it is possible to achieve output coupling e�ciencies up to 70% if a
theoretical enhancement of 200 (which corresponds to round-trip losses of 0.05%) is
desired. Lower harmonics have slighty worse output coupling e�ciencies due to the
fringes that surround central beam (see �gure 4.7), which most probably result from

1The plot uses another sign convention than (3.11), so the phase has the opposite sign.
2The experiment was conducted at the Laboratory for Attosecond Physics by Ioachim Pupeza,
Simon Holzberger, Johannes Weitenberg and Maximilian Högner
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the long trajectories.

For output coupling, all three considered target positions are interesting. The
target position directly in the focus can be expected to have the highest harmonic
intensity (compare second plot of �gure 4.6), while the target positions at the on-
axis maxima of the driving �eld have beam pro�les which are likely to allow for
better focusability. Which target position yields the highest harmonic intensity also
strongly depends on phase matching. To determine suitable target positions and to
investigate the e�ect of phase matching, the total harmonic intensity for di�erent
harmonics is plotted versus the target position (�gure 4.9). For this, two di�erent
jet diameters were assumed � a jet with a diameter of 100 µm and a diameter of
200 µm. In order to estimate how strong the phase mismatch reduces the harmonic
yield, also the power of a very thin gas target (1 µm), which small enough that no
phase matching can occur, is plotted along the other curves. This curve is scaled
by a factor 502 = 2500, which corresponds to a gas jet of 50 µm with ideal phase
matching conditions3.
It can be seen that the curve for the 1 µm target is symmetric with respect to
z = 0, but the curves for the thicker targets are asymmetric. This is because the
harmonic power that is generated in an in�nitesimally thin z slice depends only on
the amplitude and not on the phase of the driving �eld. If multiple z slices are
considered, the individual contributions sum up coherently so that phase matching
plays a role. The SSM, like a standard Gaussian beam, has a symmetric amplitude
but anti-symmetric phase with respect to z = 0.
Concerning the power, it can be seen that a thicker gas jet does not necessarily lead
to more generated XUV power. For some target positions, with a 200 µm target less
power is generated than with a 100 µm due to phase mismatch. The optimal gas jet
diameter is near 100 mm which corresponds to what was found experimentally for
the ideal jet diameter when doing HHG with a Gaussian beam.
If the 1 µm curve is scaled up to a 100 µm gas target instead to a 50 µm target,
a factor of 4 will be introduced. Even then, we can see that in the most cases the
100 µm curve achieves the same magnitudes of power than the scaled curve, which
indicates that phase matching is not a limiting factor for HHG with this mode.

In the experiment (see �gure 4.5), the harmonic yield was optimized by trying
di�erent end-�re nozzles for producing the gas jet. It turned out that a 100 µm
nozzle gave the best results, which �ts with the obervations from the simulation
that phase mismatch begins to occur for gas jet diameters larger than 100 µm. In
order to record the beam pro�les of the individual harmonics, the output coupled
radiation was split up spectrally with a re�ective di�raction grating. An example of
the recorded beam pro�les can be seen in �gure 4.10.
Unfortunately, it is not possible to observe the full beam pro�les as shown in �gure
4.7, because only a small part is coupled out through the slit in the mirror so that the
beam pro�les are cut in y direction. Nonetheless, one can compare the behavior in x
direction with the simulation results. For this, only a central line cut is considered.

3compare to equation (3.44)
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Figure 4.5.: Experimental setup for HHG with the simple slit mode

To verify the simulation data, line cuts through the simulated beam pro�les are
compared to line cute through the experimentally obtained beam pro�les (see �gure
4.11). For this, the x position and scaling of the simulated line cuts are chosen
to overlap nicely with the measured ones. After that, the relative scaling factors
can be compared to the theoretically obtained ones that follow from the conversion
e�ciency of the screen and the grating e�ciency. The agreement is within 10%, so
the implemented model seems to describe the experiment quite well for this purpose.
By �tting Gaussians to the experimental and simulated curves, it is possible to

compare the full width at half maximum (FWHM). This makes most sense for the
near-cuto� harmonics H17 and H19, as the lower harmonics come with side lobes,
which can most probably be explained by the long trajectory and make it di�cult
to �t a Gaussian to the beam pro�le. For the 17th and 19th harmonic, the FWHM
obtained this way are plotted versus target position in �gure 4.12. As can be seen,
there is a very good agreement between measurement and simulation.
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Figure 4.6.: Intensity and phase pro�le of the simple slit mode
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Figure 4.7.: Simulated harmonic beam pro�les for three di�erent target positions

Figure 4.8.: Overview of achievable output coupling e�ciencies for di�erent slit
widths versus round-trip losses of driving pulse
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2

Figure 4.9.: Harmonic power generated with the SSM at di�erent target positions
with di�erent gas jet diameters

Figure 4.10.: Picture of �uorescent screen with harmonic orders 7�19
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Figure 4.11.: Comparison of linecuts obtained from measurement and simulation

Figure 4.12.: Comparison of full widths at half maximum determined from measured
and simulated beam pro�les
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5. Outlook

5.1. Future Experimental Focus

The proof-of-principle experiment described in chapter 4.3.2 demonstrates that it is
possible to use spatially tailored driving �elds in combination with slit mirrors as an
e�cient output coupling mechanism for HHG in enhancement cavities. In particu-
lar, a considerable harmonic power of 11 µW was coupled out at 60 nm. Exploiting
all spatial degrees of freedom of the driving �eld and optimizing other experimental
parameters like mode matching, it appears quite possible to increase the power at
and around this wavelength by an order of magnitude, which would pave the way
for precision spectroscopy of the 1S − 2S two-photon transition in He+. Using the
computational model developed in the scope of this thesis, di�erent transverse modes
can be investigated with respect to output coupling e�ciency and harmonic beam
quality, and experiments with these optimized transverse modes can be conducted.

Until now, the computational model described in this thesis was only applied to
describe spectral and spatial features of the harmonic radiation. However, the time
domain is also very interesting to examine, given the fact that isolated attosecond
pulses at a high repetition rate would allow for several interesting applications in
time-resolved spectroscopy and microscopy. Usually, an attosecond burst per driv-
ing �eld half cycle is emitted, as long as the oscillation amplitude is large enough.
Therefore few-cycle driving pulses are needed to achieve isolated attosecond pulses.
In enhancement cavities, however, which would be the means of choice for achiev-
ing high repetition rates, the cavity mirrors are usually not broad-band enough to
allow for few-cycle circulating pulses. So to obtain isolated attosecond pulses in
enhancement cavitites, it is necessary to use gating mechanisms that restrict the
time window in which harmonics are produced even though the driving �eld pulse is
relatively long.
One promising gating mechanism is polarization gating. The conversion e�ciency

of HHG drops considerably for increasing ellipticity of the driving �eld, which al-
lows to produce pulses with time-dependent ellipticity that only produce harmonics
within a narrow time window. This can be realized e. g. by sending a linearly
polarized input beam through two birefringent plates. This gating mechanism was
already demonstrated in several experiments (e. g. [24]), and should also be suitable
for enhancement cavitites, as the polarization features of a circulating pulse also
reproduce after each round trip.
Moreover, it might be possible to tailor driving �elds that lead to a time-dependent

emission direction of the harmonic radiation (lighthouse e�ect), so that isolated
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attosecond pulses can be obtained by spatial �ltering in the far �eld.

5.2. Extensions of the Computational Model

Single-Atom Dipole Response

For lower harmonics, the Lewenstein model, which is implemented here, does not
yield quantitatively correct results. One possibility to improve this would be to in-
clude a module that solves the TDSE numerically, e. g. using a split-step Fourier
method, as an alternative to the fast Lewenstein model. This, however, is compu-
tational very expensive and might only be suitable for small space grids on which
the dipole elements should be calculated. There also exist several more sophisti-
cated models than the Lewenstein model that achieve impressive agreements with
TDSE solutions ([21], [9]), which might be suitable for implementing but might be
less general than the Lewenstein model. Most easy, however, would be to scale the
dipole spectra obtained from the Lewenstein model to account better account for the
atomic potential in the recombination step, as suggested by Le et al. in [15].

Elliptical Polarization

To investigate polarization gating, the implementation of the computational model
must support generally polarized driving �elds. The current implementation already
allows to compute dipole spectra for general elliptically polarized driving �elds. The
described model is in principle also able to simulate the build-up of polarized har-
monic beams as long as the electric �eld component in direction of the optical axis
vanishes, but this is not implemented yet. This would be straightforward to do and
is planned for the future.

Performance Optimizations by Exploiting Symmetry

Often, the driving �eld is radially symmetric or symmetric with respect to a plane.
This symmetry also manifests in the dipole responses. A considerable improvement
in computation speed could be achieved if these symmetries would be exploited when
present, without restricting the implementation to symmetric �elds.

Ionization of the Gas Target

To examine the harmonic radiation in the time domain, it is important that the
harmonic spectrum is modeled very accurately. One important factor which the
presented computational model neglects currently is the ionization of the target
atoms, which plays an important role except for very short driving pulses or low
intensities. Properly including ionization into the computational model takes two
steps: First, the ground state depletion must be handled in the single atom dipole
response. This is already covered both in [16] and [2] for the case that the e�ect of
depletion is still negligible over the time scale of a few optical periods.
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Second, the e�ect of ionization on the driving �eld must be taken into account. In
the general case, it is not possible anymore to describe the �eld as a superposition of
Gauss-Hermite modes, as the refractive index not spatially homogenous anymore and
even gets time-dependent. In our group, some work on modeling the propagation of
the driving pulse through a medium that gets ionized was already done [13], which is
summarized shortly in the following to give an outlook for a possible further extension
of the model implemented here.
To understand which in�uence the ionization has on the passing driving pulse,

we consider an in�nitesimally small cubic volume of the gas target. The driving
pulse will start ionizing this volume as soon as the pulse amplitude arrives at a high
enough level. Using e. g. the ADK model [1], it is possible to quantitatively obtain
the time-dependent ionization fraction within the volume which can be assumed to be
spatially constant as we assumed an in�nitesimally small volume. An example using
realistic parameters, apart from the volume size which is chosen in a way so that an
e�ect is clearly visible, is shown in �gure 5.1. The recombination process is rather
slow � the exact recombination rate depends on the plasma temperature, which in
turn depends on the interaction time � so the ionization does not drop signi�cantly
immediately after the pulse. From the ionization fraction, it is possible to calculate
the susceptibility of the plasma using formula (3.34). Figure 5.1 also shows the
refractive index corresponding to this susceptibility, neglecting the contributions from
the neutral and ionized atoms, as the contribution from the plasma is much more
important than the other contributions for high ionization fractions. By passing
through a volume with a time-dependent refractive index, the driving pulse is altered
non-linearly.
In order to get some insight into this process, we now regard only the central

frequency component of the driving pulse. If a plane wave with frequency ω passes
through a volume of length ∆z with refractive index n, it acquires a phase ∆φ =
nω/c ·∆z. For a time-dependent refractive index, this acquired phase is also time-
dependent, and results in a �eld A0 exp(i[ωt + ∆φ(t)]) right behind the volume.
The increasing time-dependent phase adds to the term ωt (compare �gure 5.1),
which results in a higher e�ective frequency, i.e. the central frequency component is
blue-shifted. The same considerations are valid for the other frequency components
of which the driving pulse is constituted, therefore the pulse is blue-shifted in the
spectral domain. The explanation for this is that the dropping refractive index results
in an increasing phase velocity inside the considered volume, which allows the end
of the pulse to "catch up", so that the oscillation gets faster which corresponds to a
blue shift.
In �gure 5.2, both the original driving pulse as well as the altered pulse after

passing through the volume, as calculated with the described model, are plotted in
the time and in the frequency domain. As can be seen, the spectrum is shifted to
higher frequencies, and spectral broadening occurs which causes the spectral peak
intensity to decrease.
In addition to this blue shift, also spatial e�ects must be considered. When the

driving beam hits the gas target, ionization occurs where the driving �eld intensity
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Figure 5.1.: In�uence of ionization on the driving pulse for an in�nitesimal cubic
volume. Data from simulations conducted by Simon Holzberger.
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is the highest, so typically near the optical axis. This means that the phase velocity
near the optical axis is larger, so the phase front will be bent in a way that the beam
is defocussed. This e�ect is called self-defocussing.
Moreover, if a high repetition rate is used, so that complete recombination between

the pulses is not possible and the velocity in the gas is not su�cient to exchange
the target medium fast enough, cumulative e�ects occur, i.e. a steady-state plasma
is formed. This regime generally is not very suitable for HHG, especially in the
context of enhancement cavities, as less neutral atoms are available for producing
harmonics and the steady-state plasma leads to dispersion which limits the possible
enhancement in cavities if not compensated.
To include these e�ects into a computational model, a more �exible approach for

the driving �eld must be chosen. Currently a closed solution to the paraxial wave
equation for constant refractive index is used for the driving �eld (compare chapter
3.3). It is not possible anymore to write down such a closed solution for the general
case of a temporally and spatially dependent refractive index. Therefore the paraxial
wave equation must be solved completely numerically. One suitable approach might
be a split-step Fourier method where space is divided in z slices perpendicular to the
optical axis and the e�ect of time-dependent refractive index is treated as described
before while slice-to-slice propagation of the �eld is done in reciprocal space with
a Fourier optics approach. For enhancement cavities, modeling the driving �eld is
even more envolved, since the incoming driving �eld is a circulating pulse, which was
already modi�ed by the gas target in previous passes.
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A. Documentation of the Code

A.1. Overview

In the following, the most important parts of the implementation of the computa-
tional model are described in detail. There are some additional modules which are
currently undocumented, which will be �xed in the near future along with some
extensions and improvements of the implementation.
The code consists of a few MATLAB modules, which are also compatible with the

open source alternative GNU Octave, and an e�cient, multi-processor capable im-
plementation of the Lewenstein model in standards-compliant C++. The concept of
the code is to provide a �exible framework that can be adapted to many experimental
situations, but should be very easy to use. Applying the code to a standard problem
should not involve programming, but only con�guring experimental parameters. To
achieve this goal, many example �les are included.
The most important modules of the code are dipole_response.m, harmonic_propagation

.m and farfield.m (see �gure A.7). The �rst one computes the dipole spectra on
a space grid for a given driving �eld, the second uses the dipole spectra to calculate
the electric �eld within a plane right after the target, and the third propagates the
electric �eld to a far-away plane.
The driving �eld can be computed by gh_driving_field.m, which in turn makes

use of gh_mode.m for the spatial shape.
The Lewenstein model is implemented in in C++ in the �le lewenstein.hpp,

which can also be used standalone from other C++ code. The Matlab (or Octave)
interface is provided by lewenstein.cpp.
info.m can be used to display some useful parameters like photon energy or cuto�

position. hermite.m calculates physical hermite polynomials, as needed for gh_mode
.m. plane_wave_driving_field.m can be used for simple tests that do not need a
fancy spatial shape of the driving �eld.

A.2. Installation

A.2.1. MATLAB under Windows

If you use MATLAB under Windows, it should be su�cient to copy the program di-
rectory to your disk. In order for the C++ implementation of the Lewenstein model
to run, you need the DLL �le vcomp90.dll. For the case that your system does
not provide this �le, the program directory contains a 32-bit and a 64-bit version of
this �le (vcomp90_x86-32.dll and vcomp90_x64-64.dll) that you can rename to
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Figure A.1.: Data �ow diagram
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vcomp90.dll. Alternatively, you can obtain this �le from the Microsoft Visual C++
Redistributable Package.

The program comes with precompiled 32-bit and 64-bit executables for the C++
implementation of the Lewenstein model, so you don't need to compile anything.

If you make changes to the C++ part of the code, however, you will need to
recompile. This works from within MATLAB, but you will need Microsoft Visual
Studio C++ installed � unfortunately, the free Express version of the compiler does
not produce multi-processor capable executables. To compile the Lewenstein imple-
mentation, open MATLAB, change your working directory to the program directory,
and run

> mex lewenstein.cpp COMPFLAGS ="/ openmp $COMPFLAGS"

With some tweaking, it is also possible to use the Express version of the compiler to
produce multi-processor capable executables. For this, you need to obtain vcomp.lib

from the Windows SDK and copy it to the VC\lib\ARCH subdirectory of your Visual
Studio installation directory, where ARCH must be replaced by your architecture.

A.2.2. GNU Octave under Linux

If you use Linux and GNU Octave, you need to compile the C++ part of the program
yourself, but this is very easy. For Debian or Ubuntu, you need to make sure that
you have installed the packages octave, liboctave-dev1 and build-essential.
The package names for other distributions should be similar. Then you must change
your working directory to the main directory of the code and execute

$ CPPFLAGS="-fopenmp -O3 -ansi" LDFLAGS="$CPPFLAGS"

mkoctfile -lgomp --mex lewenstein.cpp

A.3. Driving Field

Description

The module gh_driving_field.m aids in calculating the time-dependent driving
�eld at a given point in space as described in section 3.3. It can be used as a
callback function for the config.driving_field argument of the dipole_response
.m module.

Arguments and Return Values

The signature of the gh_driving_field function is

function [Et_cmc] = gh_driving_field(x, y, z, config)

1Older systems might need octave-headers instead of liboctave-dev
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The return value is the time-dependent complex electric �eld as a column vector (or
multiple column vectors if a non-linearly polarized driving �eld is used), in vacuum
comoving coordinates (x′, y′, z′, t′) = (x, y, z, t − z/c) and scaled atomic units. The
input arguments are:

• x, y and z specify a position in mm where the time-dependent driving �eld
should be calculated.

• config is a struct() of the following �elds:

� config.wavelength is the central wavelength of the driving �eld, in mm.
This is only used for unit conversion.

� config.peak_intensity is the peak intensity of a corresponding Gaus-
sian beam with the same power as the considered spatial mode, if both
are assumed to be monochromatic. The unit is W/cm2.

� config.pulse_coefficients are the complex Fourier coe�cients of the
temporal shape of the pulse, and config.omega is the corresponding an-
gular frequency axis in scaled atomic units. The angular frequency axis
must include both negative and positive frequencies. These two arguments
can be produced easily with the pulse.m module.

� Additionally, you need to supply all config �elds required by gh_mode.m.

Example

We simulate the electric �eld of a Gaussian beam in vacuum with a central wave
length of 1 µm and a beam waist of 10 µm for two positions: at the focus and one
millimeter behind the focus. The temporal shape is a Gaussian pulse with a FWHM
of 20 fs. For the peak intensity, we assume 7 W/cm2. For this, we use the following
code:

% basic configuration for gh_driving_field

config = struct ();

config.wavelength = 1.0e-3; % mm

config.peak_intensity = 7e13; % W/cm^2

% set pulse coefficients (temporal shape)

% configure time axis (t is in scaled atomic units , i.e.

one

% driving field period equates to 2*pi

time_steps = 200; % per period

t = -10*2*pi : 2*pi/time_steps : 10*2*pi; % 20 periods

% and get spectrum using the pulse.m module

config.pulse_shape = 'gaussian ';

config.pulse_duration = 20; % fs
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[pulse_omega , pulse_coefficients] = pulse(t, config);

config.omega = pulse_omega;

config.pulse_coefficients = pulse_coefficients;

% set mode (spatial shape)

% - for details see documentation of gh_mode.m -

% note: by default , the optical axis is the z axis

config.mode = 'TEM00';

config.beam_waist = 0.010; % mm

% compute on-axis driving field at two different z

positions

% and plot it (output is in co-moving coordinates)

Et_cmc_0mm = gh_driving_field (0, 0, 0, config);

Et_cmc_1mm = gh_driving_field (0, 0, 1, config);

plot(t, real(Et_cmc_0mm), t, real(Et_cmc_1mm))

legend('driving field at z=0mm','driving field at z=1mm')

xlabel('time in co-moving coordinates [scaled atomic units

]')

ylabel('real part of driving field [s.a.u.]')

The output is shown in �gure A.3. One can see that the carrier-envelope phase di�ers
for the two considered positions, which is due to the di�erence between phase and
group velocity that comes from the Gouy phase.

A.4. Gauss-Hermite Modes

Description

The module gh_mode.m is used by gh_driving_field.m for calculating superposi-
tions of Gauss-Hermite modes. You can select some common modes by name, but
also specify the coe�cients Anm for the superposition directly to have more control.
The following formula is implemented:

∑
nm

Anm ·
w0

w(z)
·Hn

(√
2

x

w(z)

)
exp

(
− x2

w2(z)

)
·Hm

(√
2

y

w(z)

)
exp

(
− y2

w2(z)

)
×

exp

(
i

(
kz − (1 + n+m) arctan

z

zR
+
k(x2 + y2)

2R(z)

))

Arguments and Return Values

The signature of the gh_mode function is
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function field = gh_mode(x,y,z,k,config)

The return value is the complex �eld amplitude of the mode superposition at the
speci�ed position, for the given k value, or a grid of values if a grid is used in the
arguments.

• x, y and z specify a position in mm where the mode should be calculated.

• k is the wave number in mm−1. Note that you can also pass a grid of values
over any subset of the arguments x, y, z, and k. In this case, the return value
field is also a grid of equal shape.

• config is a struct() of the following �elds:

� config.beam_waist is the beam waist w0 in mm.

� config.mode_coefficients is an array of the coe�cients Anm. The cor-
responding n and m values must be passed using the config.mode_n and
config.mode_m arguments, which must be arrays of the same length.

� config.mode (optional) can be used to select a prede�ned mode. If this
is used, the arguments config.mode_coefficients,config.mode_n and
config.mode_m are ignored and can be neglected. These modes are cur-
rently implemented:

∗ config.mode='TEM00' is a simple Gaussian beam.

∗ config.mode='GH10' is the �rst higher-order mode GH10.

∗ config.mode='Donut' is the mode
√

1/2 ·GH01 +
√

1/2 ·GH10.

∗ config.mode='1d-quasi-imaging' is the mode
√

3/11 ·GH00−
√

8/11 ·GH04.

∗ config.mode='2d-quasi-imaging' is the mode
√

3/11 ·GH00−
√

4/11 ·GH04−√
4/11 ·GH40.

This argument is case-insensitive.

� config.rotation (optional) is a 3× 3 rotation matrix that is applied to
the mode. This argument can only be used if size(x)==size(y)==size
(z), which can be achieved with the ndgrid and meshgrid functions.

Example

We compute the complex amplitude within three z planes for three di�erent modes,
assuming a wavelength of λ = 1µm. For the modes, we use a simple Gaussian beam
(config.mode='TEM00'), a prede�ned higher-order mode (config.mode='1d-quasi
-imaging') and a user-de�ned mode

√
3/10GH00 − i

√
5/10GH20 +

√
2/10GH03.

Each mode is plotted in the focal plane (z = 0), in a plane which is one Rayleigh
range behind the focus (z = zR) and at a z value far away from the focus (z = 100zR).
The result can be seen in �gure A.4.
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% set wave number (assuming lambda =1um)

k = 2*pi/1e-3; % mm^-1

% configure 3 different modes

% Gaussian beam

config1 = struct ();

config1.beam_waist = 0.010; % mm

config1.mode = 'TEM00';

% a predefined mode

config2 = struct ();

config2.beam_waist = 0.010; % mm

config2.mode = '1d-quasi -imaging ';

% a custom mode

config3 = struct ();

config3.beam_waist = 0.010; % mm

config3.mode_n = [0 2 0];

config3.mode_m = [0 0 3];

config3.mode_coefficients = [sqrt (3/10) -1i*sqrt (5/10)

sqrt (2/10) ];

% setup grid

xv = -0.02:0.001:0.02; yv = -0.02:0.001:0.02;

[x,y] = meshgrid(xv, yv);

% plot each mode at three different z positions:

% at focus , one Rayleigh range behind focus , far from

focus

z_R = k*config1.beam_waist ^2/2;

subplot_nr = 1;

for config ={config1 , config2 , config3 }; config=config {1};

% compute field at z=0, z=z_R , z=100* z_R

field_0 = gh_mode(x,y,0, k, config);

field_z_R = gh_mode(x,y,z_R , k, config);

field_far = gh_mode (100*x,100*y,100*z_R , k, config);

% plot fields

subplot(3,3, subplot_nr); subplot_nr = subplot_nr +1;

imagesc(xv,yv,abs(field_0).^2);

title('z=0');

subplot(3,3, subplot_nr); subplot_nr = subplot_nr +1;
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z=0 z=zR far field

z=0 z=zR far field

z=0 z=zR far field

Figure A.3.: Modes calculated by gh_mode.m. The �rst row shows a Gaussian beam,
the second row the prede�ned mode 1d-quasi-imaging, and the third
a custom superposition of Gauss-Hermite modes.

imagesc(xv,yv,abs(field_z_R).^2);

title('z=z_R');

subplot(3,3, subplot_nr); subplot_nr = subplot_nr +1;

imagesc (100*xv ,100*yv,abs(field_far).^2);

title('far field');

end

A.5. Pulse Shape

Description

The module pulse.m computes the Fourier coe�cients of the temporal shape of the
pulse, as needed by gh_driving_field.m. It can also produce elliptically polarized
pulses.
The signature of the pulse function is

function [omega , coefficients] = pulse(t, config)
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The return values are:

• omega is the angular frequency axis which is calculated from the t axis supplied
as input argument. It is in scaled atomic units, i.e. a value of 1 corresponds to
the angular frequency of the driving �eld. The array includes negative angular
frequencies and starts at ω = 0.

• coefficients(C,omega_i) is an array containing the complex Fourier coef-
�cients of the pulse shape, for a peak value of 1. The �rst index gives the
component C of the �eld vector, which may take the values 1 or 2 for elliptical
polarization or just 1 for linear polarization (see config.ellipticity argu-
ment), and the second index gives the angular frequency corresponding to the
return value omega.
The Fourier transformation is implemented as conj(fft(conj(...))) to ac-
count for the sign convention we use, which is important to know if you want
to invert the Fourier transformation to get the temporal pulse shape.

The arguments are:

• t is the time axis, as an equally spaced, one-dimensional array. It must be in
scaled atomic units, i.e. a value of 2π corresponds to one driving �eld period.

• config is a struct() of the following �elds:

� config.wavelength is the central wavelength of the driving �eld, in mm.
This is only used for unit conversion.

� config.pulse_shape (optional) is the temporal shape of the pulse. It can
be one of 'constant' (continuous wave, default), 'gaussian' (a Gaussian
pulse), 'super-gaussian' (∝ exp(−αt4)) or 'cos_sqr' (a cos2 pulse). If
this argument is set to a di�erent value than 'constant', you also need
to supply a config.pulse_duration argument which gives the FWHM
of the pulse with respect to intensity in fs.

� By default, the envelope is centered at t = 0 and the carrier is a cos
function. You can phase shift the carrier using the optional config.
ce_phase argument to become cos(ωt+ ∆φ) were ∆φ is given by config

.ce_phase in radians.

� By default, a the carrier is assumed to be linearly polarized. In this case,
the �rst index of the return value coefficients(C,omega_i) takes only
the value 1. If you specify the optional argument config.ellipticity,
an elliptically polarized carrier

1√
1 + (1− e)2

(
cos(ωt)

(1− e) sin(ωt)

)
with given ellipticity e is assumed, with two components C = 1, 2. This
argument can also be combined with the config.ce_phase argument.
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Example

We calculate the spectrum of a cos2 pulse with a FWHM of 30 fs and a central
wavelength of 1 µm. The spectrum as well as the pulse are plotted (see �gure A.5).

% setup time axis: 100 driving field periods

t= -50*2*pi : 2*pi/100 : 50*2*pi;

config = struct ();

config.wavelength = 1e-3; % mm

config.pulse_duration = 30; % fs

config.pulse_shape = 'cos_sqr ';

% compute pulse coefficients

[omega , coefficients] = pulse(t, config);

% plot pulse and spectrum

subplot (2,1,1);

plot(t, real(ifft(conj(coefficients))));

title('pulse');

xlabel('time [s.a.u.]');

subplot (2,1,2);

plot(omega , abs(coefficients).^2);

xlim ([0.5 ,1.5])

title('spectrum ');

xlabel('angular frequency [s.a.u.]');

A.6. Dipole Response

Description

The module dipole_response.m calculates the Fourier-transformed dipole response
on a given space grid, using the Lewenstein model as implemented in lewenstein.

cpp. Calculating the dipole responses is what takes most of the time when running
the program, therefore an intelligent on-disk cache is implemented so that already
computed dipole responses can be used later without repeating the calculation.
In order to provide maximum �exibility and to avoid the need to keep big amounts

of data in memory, the driving �eld must be passed as a callback function. This mod-
ule can compute the dipole responses for driving �elds with general time-dependent
polarization.

Arguments and Return Values

The signature of the dipole_response function is

73



-1

-0.5

0

0.5

1

-400 -300 -200 -100 0 100 200 300 400

time [s.a.u.]

pulse

0

50000

100000

150000

200000

250000

300000

350000

400000

0.6 0.8 1 1.2 1.4

angular frequency [s.a.u.]

spectrum

Figure A.4.: Time evolution and spectrum of a cos2 pulse computed by pulse.m
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function [omega , response_cmc , progress] = dipole_response

(t_cmc , xv, yv, zv, config , progress)

The return values are:

• omega is the angular frequency ω axis corresponding to the last index of the
response_cmc return value. It is in scaled atomic units, i.e. a value of 1
corresponds to the angular frequency of the driving �eld.

• response_cmc(yi,xi,zi,C,omega_i) contains the dipole response for each
space grid point and frequency. It is an array with �ve indices, where the
�rst three give the position in the space grid (corresponding to the input argu-
ments yv, xv and zv), the last one gives the angular frequency (corresponding
to the return value omega), and C numerates the components of the dipole
moment vector d =

∑
C dCeC , which is important if you do calculations with

elliptically polarized �elds.

• progress (optional) is a struct() that contains information about how much
of the calculation is already done and how much time was spent. Using this
return value only makes sense if you subdivide your space grid and call the
dipole_response function multiple times. The returned struct() has the
following �elds:

� progress.points_total is the total number of grid points for which the
dipole response must be calculated.

� progress.points_computed is the number of grid points for which the
dipole response was already calculated.

� progress.time_spent is the time in seconds that was already spent cal-
culating the dipole responses.

The arguments of the dipole_response function are:

• t_cmc is the vacuum comoving time axis t′ = t − z/c in scaled atomic units,
i.e. a value of 2π corresponds to one driving �eld period. It must be equally
spaced.

• xv, yv and zv are arrays of x, y and z values, respectively, which are used to
build the space grid on which the dipole responses should to be calculated.

• config is a struct() of the following �elds:

� config.wavelength is the central wavelength of the driving �eld, in mm.

� config.driving_field is the name of a .m �le (without the .m extension)
that calculates the driving �eld. This callback function must have the
same signature as gh_driving_field.m, which is described in section
A.3.
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� config.ionization_potential is the ionization potential of the model
atom for which the dipole responses should be calculated, in eV.

� config.tau_interval_length and config.tau_window_length specify
the shape of the window function w(τ) used in the Lewenstein formula
(3.6). The former gives the length over which integration runs without
window function, the latter gives the length of an appended cos2 win-
dow, i.e. config.tau_interval_length corresponds to τ1 and config.

tau_window_length corresponds to τmax − τ1.
Both arguments are in driving �eld periods, so to include all long trajec-
tories, you should at least choose a config.tau_interval_length of 1.
A reasonable value for config.tau_window_length is 0.5.

� config.t_window_length is the length of a falling cos2 window that is
applied to end of the time-dependent dipole response before the Fourier
transformation is performed to obtain the dipole spectrum. This is also
used to reduce artifacts in the spectrum due to the fact that the array
containing the time-dependent dipole response starts at zero but may end
at a non-zero value. This value is also in driving �eld periods. A few
periods, e.g. config.t_window_length=5, should be su�cient.

� By default, the driving �eld is assumed to be zero for t < t_cmc(1). To
simulate a periodic driving �eld, it is possible to change this behaviour by
setting config.periodic=1 so that the driving �eld is periodically contin-
ued below t_cmc(1). This only works if the t_cmc array is a periodically
continuable subdivision of the interval [0, 2π), e.g. t_cmc = 0 : pi/100

: 2*pi-pi/100.
For periodic mode, the argument config.t_window_length must be zero
and can be omitted.

� By default, the full spectrum is calculated, so that the returned array may
get very large and unmanagable. The optional config.omega_ranges ar-
gument can be used to con�ne the returned spectrum to certain interesting
ranges. The format is [start1 end1; start2 end2; ...] where each
pair of start and end values declares one range of angular frequencies ω,
again in scaled atomic units.

� By default, only the dipole spectrum for positive angular frequencies ω
is returned. If you want to calculate the time-dependent dipole response
using an inverse Fourier transformation, you can set the optional config
.raw argument to 1 so that you get the raw spectrum as returned by
the fft function, with both positive and negative angular frequencies. If
config.raw=1 is used, config.omega_ranges must not be set.

� config.cachedir (optional) is a directory that is used as cache for al-
ready computed dipole spectra. If no directory is given, no result is saved
and no previously saved results will be used. If a directory is given, the
dipole_response function will check if the con�guration of the cached
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spectra equals the current con�guration, and if it does, it uses the cached
spectra instead of recomputing. If the con�guration of the saved spectra
does not �t or if the cache directory is empty or non-existant, the dipole
response is computed and saved to the cache.

� This module calls lewenstein.cpp. You can override the lower-lewel
con�g values epsilon_t and dipole_method(see chapter A.9).

� Additionally, you need to supply all config �elds required by the function
speci�ed in config.driving_field.

• progress (optional) is a struct() that contains information about how much
of the calculation is already done and how much time was spent. Passing this
as an argument only makes sense if you subdivide your space grid and call the
dipole_response function multiple times. The passed struct() must have
at least the �eld progress.points_total and it may have the other �elds
described before (see list of return values).

Example

We consider a 100 fs Gaussian pulse that propagates as a Gaussian beam with a
beam waist of 10 µm, with a peak intensity of 7 W/cm2 and a central wavelength
of 1 µm. We assume a xenon gas target and compute the dipole spectrum in four
di�erent points: on-axis in the focus and 200 µm behind the focus, and the same
o�-axis at a distance of 5 µm from the optical axis. The resulting plots can be seen
in �gure A.6.

% configure time axis

time_steps = 200; % per period

t_cmc = -40*2*pi : 2*pi/time_steps : 40*2*pi; % 80 periods

% configure space grid

xv = [0 0.005]; % mm

yv = [0]; % mm

zv = [0 0.200]; % mm

% configure wavelength

config = struct ();

config.wavelength = 1.0e-3; % mm

% configure driving field

config.driving_field = 'gh_driving_field ';

% basic configuration

config.peak_intensity = 7e13; % W/cm^2
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% temporal shape

config.pulse_shape = 'gaussian ';

config.pulse_duration = 100; % fs

[pulse_omega , pulse_coefficients] = pulse(t_cmc , config);

config.omega = pulse_omega;

config.pulse_coefficients = pulse_coefficients;

% spatial shape

config.mode = 'TEM00';

config.beam_waist = 0.010; % mm

% set ionization potential for a Xe atom

config.ionization_potential = 12.13; % eV

% configure tau window and t window

config.tau_interval_length = 1;

config.tau_window_length = 0.5;

config.t_window_length = 5;

% we are only interested in harmonics below the 50th

config.omega_ranges = [0 50];

% if we are only interested in 13th and 15th harmonics:

%config.omega_ranges = [12.5 13.5; 14.5 15.5];

% set cache directory

config.cachedir = 'example_dipole_response_cache ';

% call dipole_response

[omega , response_cmc] = dipole_response(t_cmc , xv, yv, zv,

config);

% plot dipole spectrum at different positions

subplot (2,2,1);

spectrum = squeeze(response_cmc (1,1,1,1,:));

semilogy(omega , abs(spectrum).^2);

ylabel('|dipole moment |^2 [s.a.u.]');

title('x=z=0');

subplot (2,2,2)

spectrum = squeeze(response_cmc (1,1,2,1,:));

semilogy(omega , abs(spectrum).^2);

title('x=0 z=200um')
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subplot (2,2,3)

spectrum = squeeze(response_cmc (1,2,1,1,:));

semilogy(omega , abs(spectrum).^2);

xlabel('angular frequency [s.a.u.]');

ylabel('|dipole moment |^2 [s.a.u.]');

title('x=5um z=0')

subplot (2,2,4)

spectrum = squeeze(response_cmc (1,2,2,1,:));

semilogy(omega , abs(spectrum).^2);

xlabel('angular frequency [s.a.u.]');

title('x=5um z=200um')

A.7. Propagation of Harmonics

Description

The module harmonic_propagation.m simulates the high harmonic generation on
a space grid using dipole_response.m and calculates the complex electric �eld
amplitude of the harmonic radiation within the last z plane of the grid. The
dipole_response function is called for each z slice of the grid, so that it can be
avoided to keep large amounts of data in memory.
General polarization of the harmonic radiation is not implemented yet, and the re-
fractive index is assumed to be one for the harmonic radiation, so that only geometri-
cal and intensity-dependent phase matching e�ects can be accounted for. Absorption
of the harmonics within the gas target is implemented, however.

Arguments and Return Values

The signature of the harmonic_propagation function is

function [z_max ,omega ,U] = harmonic_propagation(t_cmc , xv

,...

yv, zv, dipole_response_config , config)

The return values are:

• z_max is the z value in mm in which the complex electric �eld U is computed.

• omega is the angular frequency ω axis corresponding to the last index of the U
return value. It is in scaled atomic units, i.e. a value of 1 corresponds to the
angular frequency of the driving �eld.

• U(yi,xi,omega_i) is the complex electric �eld amplitude of the harmonic ra-
diation within the last z plane of the input grid, in scaled atomic units. It is
an array with three indices, where the �rst two give the position within the

79



10
-15

10
-10

10
-5

10
0

10
5

0 10 20 30 40 50

|
d
i
p
o
l
e
 
m
o
m
e
n
t
|
2
 
[
s
.
a
.
u
.
]

x=z=0

10
-15

10
-10

10
-5

10
0

10
5

0 10 20 30 40 50

x=0 z=200um

10
-15

10
-10

10
-5

10
0

10
5

0 10 20 30 40 50

|
d
i
p
o
l
e
 
m
o
m
e
n
t
|
2
 
[
s
.
a
.
u
.
]

angular frequency [s.a.u.]

x=5um z=0

10
-15

10
-10

10
-5

10
0

10
5

0 10 20 30 40 50

angular frequency [s.a.u.]

x=5um z=200um

Figure A.5.: Dipole spectra calculated with the dipole_response.m module
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output plane (corresponding to the input arguments yv, xv) and the last one
gives the angular frequency (corresponding to the return value omega).

The arguments are:

• t_cmc is the vacuum comoving time axis t′ = t − z/c in scaled atomic units,
i.e. a value of 2π corresponds to one driving �eld period. It must be equally
spaced.

• xv, yv and zv are arrays of x, y and z values, respectively, which are used to
build the space grid on which the dipole responses are should be calculated.
As trapezoidal integration in z direction is used, you need to make sure that the
zv array has at least two elements. For testing purposes, it might be convenient
to pass an array with only one element to save computation time. In this case,
a target width of 1 nm is assumed and a warning is issued.

• dipole_response_config is a struct() that is passed to the dipole_response
function as config argument. See the documentation of the dipole_response
function for more information. Note: Until general polarization is imple-
mented, you must choose these con�guration parameters so that only com-
ponent of the dipole moment vector is returned by dipole_response.

• config is a struct() of the following �elds:

� config.density is the density of the gas, in mm−3. Currently, the gas
density is assumed to be constant over the entire space grid.

� config.pressure (optional) can be used instead of config.density to
provide the gas pressure in bar. Then, the density is calculated using the
ideal gas law assuming a temperature of 295 K.

� config.transmission and config.transmission_photon_energy (op-
tional) can be used to provide a photon-energy-dependent transmission
curve of the target gas, so that the absorption of harmonics within the gas
target can be taken into account. If not given, no absorption is assumed.
config.transmission must be an array specifying the transmission with
respect to intensity for the used gas at a pressure of 30 Torr, a tempera-
ture of 295 K and a path of 1 cm. config.transmission_photon_energy
is the corresponding photon energy axis and must be in eV. This data
can be obtained e.g. from http://henke.lbl.gov/optical_constants/

gastrn2.html [12].

� By default, it is checked whether the discretization of the space grid is
�ne enough by comparing the phases of the of the harmonic radiation at
adjacent grid points. If the phase di�erence is too big, a warning is issued.
This check is computationally quite expensive, so if you are sure that the
discretization is �ne you can disable the checks setting config.nochecks

=1.
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Example

We consider a 1 µm continuous wave Gaussian laser beam with a beam waist of 10 µm
and a peak intensity of 7 W/cm2 that hits a xenon gas target with a diameter of
50µm. The electric �eld right after the gas target is computed and plotted (compare
�gure A.8). Although a continous wave laser with such a high intensity is not realistic,
it makes sense to approximate a pulsed laser with a long pulse duration by a CW
laser, as this decreases the computation time drastically.

% configure time axis - only one period as we use periodic

mode

time_steps = 70; % per period

t_cmc = 0 : 2*pi/time_steps : 2*pi;

t_cmc = t_cmc (1:end -1);

% configure space grid

xv = -.010:0.0002:.010; % 20 um

yv = -.010:0.0002:.010; % 20 um

zv = -0.025:0.005:0.025; % 50 um

% configure wavelength

config = struct ();

config.wavelength = 1.0e-3; % mm

% configure driving field

config.driving_field = 'gh_driving_field ';

% basic configuration

config.peak_intensity = 7e13; % W/cm^2

% temporal shape

config.pulse_shape = 'constant '; % optional , is default

value

[pulse_omega , pulse_coefficients] = pulse(t_cmc , config);

config.omega = pulse_omega;

config.pulse_coefficients = pulse_coefficients;

% spatial shape

config.mode = 'TEM00';

config.beam_waist = 0.010; % mm

% set ionization potential for a Xe atom

config.ionization_potential = 12.13; % eV

% configure tau window and t window
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config.tau_interval_length = 1;

config.tau_window_length = 0.5;

% activate periodic mode

config.periodic = 1;

% we are only want to plot harmonic 21

config.omega_ranges = [21 -0.1 21+0.1];

% set cache directory

config.cachedir = 'example_harmonic_propagation_cache ';

% configuration for harmonic propagation

propagation_config = struct ();

propagation_config.pressure = 0.1; % bar

% set absorption data:

% xenon_abs.dat is the file downloaded from

% http :// henke.lbl.gov/optical_constants/gastrn2.html

% (first two lines commented out with %)

load('xenon_abs.dat');

propagation_config.transmission_energy = xenon_abs (:,1);

% photon energy in eV

propagation_config.transmission = xenon_abs (:,2);

% for 30 torr , 1 cm

% call harmonic_propagation

[z_max , omega , U] = harmonic_propagation(t_cmc , xv, yv, zv

, config , propagation_config);

% plot electric field amplitude of harmonic radiation

% - due to config.omega_ranges and using periodic mode ,

the

% omega_i index of U is one -dimensional , so we can use

% squeeze to get a 2d array

intensity = abs(squeeze(U)).^2;

imagesc(xv,yv, intensity / max(max(intensity)))

title(['electric field intensity at z=' num2str(z_max) 'mm

'])

xlabel('x [mm]')

ylabel('y [mm]')
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Figure A.6.: Electric �eld of 21st harmonic in plane right after gas target as computed
with harmonic_propagation.m

A.8. Far Field

Description

Given the complex electric �eld amplitude in an input plane, the module farfield

.m calculates the �eld in a far-away plane using the far �eld approximation. This is
useful to get the electric �eld of the harmonics on a screen plane from the electric
�eld right after the gas target as calculated by harmonic_propagation.m.

Arguments and Return Values

The signature of the farfield function is

function [E_plane] = farfield(xv,yv,z_U ,omega , U, config)

The return value E_plane(omega_i,yi,xi) is an array that contains the complex
electric �eld amplitude in the output plane for each angular frequency. It has three
indices, where the �rst two give the position within the output plane (corresponding
to the meshgrid input arguments config.plane_x, config.plane_y) and the last
one gives the angular frequency (corresponding to the omega argument).

The arguments are:
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• xv and yv are arrays of x and y values for the input plane, respectively. The
unit is mm.

• z_U is the z position of the input plane, in mm.

• omega is the angular frequency axis for the input �eld given by the argument
U. It is in scaled atomic units, i.e. a value of 1 corresponds to the angular
frequency of the driving �eld.

• U(yi,xi,omega_i) is the complex electric �eld amplitude in the input plane,
and has to be in scaled atomic units, and conventional (not comoving) coor-
dinates. It must be an array with three indices, where the �rst two give the
position in the input plane (corresponding to the yv and xv arguments) and the
last one gives the angular frequency (corresponding to the argument omega).

• config is a struct() of the following �elds:

� config.wavelength is the central wavelength of the driving �eld, in mm.
This is only used for unit conversion.

� With config.plane_x and config.plane_y you specify the rectangle
within the output plane in which the far �eld is computed. These argu-
ments must be a meshgrid of output plane coordinates, in mm. The mesh-
grid can be produced with the meshgrid function: [plane_x, plane_y]

= meshgrid(plane_xv, plane_yv) where plane_xv and plane_yv are
1-dimensional arrays of x and y values, respectively.

� config.plane_distance is the distance of the output plane from the
origin, in mm.

� For the far �eld approximation, a 2-dimensional spatial Fourier transform
on the input �eld is calculated. Then an interpolation must be done in
this spatial frequency spectrum. Due to the oscillating complex phase,
this is only possible if the resolution of the spectrum is �ne enough. If it
is not, a warning is issued (see config.nochecks argument). In this case,
you must increase the resolution of the spectrum by increasing the size of
the input plane. This can be achieved by applying zero padding using the
two optional arguments config.padding_x and config.padding_y. The
format of both arguments is [start, end], where start and end specify
the interval to which the xv and yv arguments should be extended by zero
padding.

� config.plane_theta, config.plane_phi and config.plane_psi can be
used to rotate the output plane around the x, y and z axis, respectively,
with the speci�ed angles. If more than one argument is given, �rst the
rotation around the z axis is applied, then around the y axis and then
around the x axis. If no rotation is given, the output plane is parallel to
the x-y-plane. All three angles are in degree.
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� By default, it is checked whether the zero padding applied with the config
.padding_x and config.padding_y arguments is su�cient by comparing
the phases of adjacent points in the spatial frequency spectrum of the
input �eld. If it is not, a warning is issued. As this check is computation-
ally quite expensive, you can disable the checks by setting the optional
argument config.nochecks=1.

Example

The harmonic radiation U right after the gas target is computed as shown in the
example of the harmonic_propagation.m module. Using this and the corresponding
variables z_max, omega, xv and yv, we can compute the complex electric �eld of
the harmonic radiation on a screen that is placed 50 cm behind the focus, standing
perpendicular to the optical axis. The output can be seen in �gure A.8.

% ... z_max , omega and U computed like in the example for

the

% harmonic_propagation module ...

% Now: compute far field from field U behind target

% configure far field module

plane_xv = -20:0.05:20; % mm

plane_yv = -20:0.05:20; % mm

[plane_x , plane_y] = meshgrid(plane_xv , plane_yv);

config.plane_x = plane_x;

config.plane_y = plane_y;

config.plane_distance = 500; % mm

config.padding_x = [-0.02 0.02];

config.padding_y = [-0.02 0.02];

% compute far field

E_plane = farfield(xv,yv,z_max ,omega , U, config);

% as the omega_i index of U is one -dimensional , the

omega_i

% index of E_plane also is, so we can use squeeze to get a

% 2d array

intensity = abs(squeeze(E_plane)).^2;

imagesc(plane_xv ,plane_yv , intensity / max(max(intensity))

)
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Figure A.7.: Electric �eld of 21st harmonic at a z plane 50cm behind the focus, as
computed by farfield.m

title(['field at ' num2str(config.plane_distance) 'mm 

behind focus'])

xlabel('x [mm]')

ylabel('y [mm]')

A.9. Matlab Interface to the Implementation of the

Lewenstein Model

Description

Unlike the other modules, the Lewenstein model is implemented in C++ (lewenstein
.hpp). The �le lewenstein.cpp provides the Matlab (or Octave) interface to this
C++ code and must be compiled to a .mex �le in order to be usable from within
Matlab/Octave (see A.2). It computes the time-dependent single-atom dipole re-
sponse from a given driving �eld E(t) and is able to deal with elliptically polarized
�elds.
This module is rather low-lewel, so you might prefer to use the dipole_response.m
module which has a more convenient interface and calls this module for you.
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Arguments and Return Values

The signature of the farfield function is

dt = lewenstein(t, Et, config);

The return value dt(C,t_i) is an array that contains the time-dependent dipole
moment in scaled atomic units, where the �rst index gives the component of the
dipole moment vector and the second index gives the time (corresponding to the
argument t). The arguments are:

• t is the time axis in scaled atomic units, i.e. a value of 2π corresponds to one
driving �eld period. The array must be equally spaced and start at 0.

• Et(C,t_i) is the time-dependent electric driving �eld in scaled atomic units.
The �rst index gives the component of the electric �eld vector, so that you
can pass elliptically polarized driving �elds. The second index gives the time
(corresponding to the argument t).

• config is a struct() of the following �elds:

� config.ip is the ionization potential Ip of the used model atom in scaled
atomic units.

� config.epsilon_t (optional) is a small positive constant that is used to
prevent integral (3.6) from diverging at τ = 0, in scaled atomic units. The
default value is 10−4.

� config.weights is a one-dimensional array specifying the window func-
tion w(τ) of (3.6). The corresponding τ axis is given by the t argument.

� config.dipole_method (optional) speci�es which method should be used
to compute the bound-continuum dipole matrix elements D(v). Cur-
rently, 'H' (default) and 'symmetric_interpolate' are supported.
The former uses dipole matrix elements for a scaled hydrogen-like poten-
tial, as given by (2.2). When this method is used, you can specify the
depth of the potential in units of Ip using the optional config.alpha ar-
gument.
The latter allows you to pass arbitrary spherically symmetric functions
D(v) = D̃(|v|) · v̂ by providing an array D̃(vi) in which D̃(|v|) is inter-
polated. The vi axis is assumed to be equally spaced and to start at zero,
and the spacing must be given by the config.deltav argument. The ar-
ray D̃(vi) must be speci�ed with the config.dipole_elements argument.
Both arguments are in scaled atomic units. Note that in the Lewenstein
model, the dipole spectra are very sensitive to the dipole matrix elements.
As linear interpolation is used, you need to make sure to use a su�ciently
�ne discretization to avoid artifacts.
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